…красота - не прихоть полубога, А хищный глазомер простого столяра.

О. Мандельштам

Принцип причинности: причина предшествует следствию. Мы увидим, что причинность физических явлении действительно может быть проверена на опыте.

Любая теория должна удовлетворять принципу соответствия: переходить в предшествующую, менее общую теорию в тех условиях, в которых эта предшествующая была установлена. Этот принцип отражает преемственность науки, мы обсуждали его в предыдущем разделе.

Принцип наблюдаемости, который сыграл такую важную роль в становлении физики XX века: в науку должны вводиться только те утверждения, которые могут быть хотя бы мысленно, хотя бы в принципе проверены на опыте. Впрочем, как станет ясно, это требование нельзя применять без оговорок.

В трудный период становления квантовой механики, период мучительных споров, вызванных противоречием между вероятностным характером предсказаний новой теории и однозначной причинностью классической физики, Нильс Бор ввел принцип дополнительности, согласно которому некоторые понятия несовместимы и должны восприниматься только как дополняющие друг друга. Так, измерение координаты частицы делает неопределенным понятие скорости. Идея дополнительности позволяет понять и примирить такие противоположности, как физическая закономерность и целенаправленное развитие живых объектов.

Древние говорили: «Natura поп fecit saltis» («Природа не делает скачков»). Это означает, что величины, встречающиеся в природе, - непрерывные функции других величин. Скачки, которые возникают в теориях, - результат разумной идеализации процессов, в реальности скачки хоть мало, но заглажены. С этим характером физических функций связана целая область теоретической физики, которая изучает так называемые «аналитические свойства» физических величин.

Требование красоты научной теории, как мы увидим, также есть один из принципов познания. Одно из проявлений красоты в физике - свойства симметрии законов природы, например, неизменность уравнений электродинамики при переходе к движущейся системе координат или при изменении знака времени. Свойствам симметрии будет посвящена целая глава; мы увидим, что каждому типу симметрии соответствует свой закон сохранения.

Законы сохранения дают нам в руки могучий способ проверки правильности результатов - достаточно увидеть, что в предлагаемой теории нарушается хорошо установленная симметрия, как это тут же послужит основанием для серьезных сомнений в правильности теории. Так, закон сохранения энергии - следствие однородности времени - есть хорошо проверенное на опыте очень общее свойство природы. Когда мы сталкиваемся с нарушением закона сохранения энергии в какой-либо теоретической конструкции, мы считаем ее неверной. Это дало право Французской академии наук принять решение не рассматривать никаких проектов «вечного двигателя». В следующей главе в разделе «Секреты ремесла» мы увидим, как, пользуясь симметрией, можно сразу же обнаружить ошибку в рассуждениях.

Обсудим более внимательно принципы причинности, наблюдаемости и дополнительности.

Яйцо из курицы или курица из яйца?

Что раньше - причина или следствие? Наш повседневный опыт дает однозначный ответ на этот вопрос,

но можно ли этому доверять? Как сделать строгую проверку? Как ни странно на первый взгляд, сомнение правомерно и проверка может быть сделана. Причина действительно предшествует следствию. А на вопрос, поставленный в заглавии, ответить нельзя.

Если свет рассеивается на каком-нибудь теле, то, конечно, рассеянная волна вызвана падающей. Если падающая волна имеет вид короткого импульса, то и рассеянная волна будет иметь похожий вид. Если есть причинность, следствие должно быть после причины, и всплеск рассеянной волны должен быть сдвинут относительно падающего всплеска. Отсюда уже строго математически выводят, что интенсивность рассеянной волны должна быть связана простым соотношением с поглощающей способностью рассеивателя. Такая связь называется «дисперсионным соотношением». Вместо того чтобы проверять сдвиг всплеска, можно проверить выполнимость этого соотношения. И эта связь действительно проверялась на опыте. В пределах ошибок эксперимента не обнаружилось нарушения причинности: следствие возникает после причины. Тот факт, что проверка могла быть сделана, и показывает логическую оправданность сомнения. Всякое содержательное утверждение может быть подтверждено или опровергнуто, в этом доказательство его содержательности. То, что не требует проверки, относится к тривиальным истинам.

Существует еще одна проверка, тоже на первый взгляд ненужная. Если какое-либо событие с той или иной вероятностью приводит к нескольким следствиям, то сумма всех вероятностей должна равняться единице, то есть хоть что-нибудь, да непременно произойдет. В квантовой механике данное утверждение выглядит немного сложнее. Там складываются не вероятности, а амплитуды волновой функции, квадрат которой дает вероятность. Грубо говоря, складываются корни из вероятностей. Но и в этом случае должно соблюдаться требование, чтобы полная вероятность всех событий равнялась единице. Отсюда вытекает определенное соотношение между наблюдаемыми величинами, и оно может быть проверено на опыте. Называется такое свойство «унитарность» (единичность). Если бы условие унитарности нарушалось, это означало бы либо несостоятельность теории, либо необходимость углубления понятия вероятности. Пока мы не сталкивались с нарушением унитарности.

Не насиловать природу, а спрашивать ее

Опасность введения предвзятых понятий, основанных на повседневном опыте, была ясна уже Галилею, который в «Разговорах» призывает к «меньшей доверчивости к тому, что на первый взгляд представляют нам чувства, способные нас легко обмануть… Лучше… постараться посредством рассуждения или подтвердить реальность предположения, или разоблачить его обманчивость».

В начале XX века этот призыв превратился в требование наблюдаемости вводимых понятий. В 1905 году Эйнштейн, создавая теорию относительности, начал

с анализа понятия одновременности. Это понятие раньше вводилось в науку интуитивно без указаний на какой-либо, хотя бы принципиально, возможный способ проверки. Эйнштейн задался целью выяснить, является ли понятие одновременности относительным, то есть изменяется ли оно при переходе к движущейся системе координат. Совпадает ли понятие одновременности для наблюдателя, стоящего на земле, и наблюдателя, равномерно движущегося относительно нее?

Чтобы ответить на этот вопрос, нужно было дать способ физического определения одновременности. Эйнштейн предложил следующее: две вспышки света в точках А и В считаются одновременными, если свет от них приходит в точку, лежащую посередине, одновременно. Из этого определения немедленно вытекает, что события, одновременные для неподвижного наблюдателя, не одновременны для наблюдателя, движущегося относительно платформы, на которой выбраны точки А и В. Действительно, пусть платформа проносится мимо нас в сторону от А к В. Если в средней точке платформы обе вспышки были получены одновременно, то наблюдатель на платформе скажет, что вспышки в А и В произошли одновременно, тогда как неподвижный наблюдатель будет считать, что одна вспышка произошла позже - ведь средняя точка движется навстречу свету, и вспышке от В до середины приходится пройти меньшее расстояние, чем вспышке от А.

Итак, одновременность оказывается понятием относительным. Но если так, то и длина, скажем, какого- нибудь стержня тоже оказывается относительной, ведь для того, чтобы установить ее, нужно одновременно измерить положение левого и правого концов. Когда такое измерение будет делать физик, находящийся на платформе, неподвижный наблюдатель увидит, что он измеряет левый и правый концы не одновременно. Правильное, с точки зрения неподвижного наблюдателя, значение будет отличаться от значения, определенного движущимся наблюдателем.

По существу, вся частная теория относительности возникает как следствие последовательно проведенного принципа наблюдаемости. Единственное, на чем мы основывали рассуждения, - независимость скорости света от движения источника, а это следует из уравнений Максвелла и с большой точностью было проверено на опыте Альбертом Майкельсоном в 1881 году. Простые алгебраические вычисления привели Эйнштейна к объяснению лоренцова сокращения: длина движущегося со скоростью v предмета / сокращается в направлении движения по сравнению с длиной неподвижного /0:/=/0]/1-v2/c2. У

Вы читаете ПОИСКИ ИСТИНЫ
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×