информацией между анализаторами с помощью какого-либо гипотетического механизма. Они утверждали, что в условиях данных экспериментов не были выполнены требования локальности Белла. Поэтому такие опыты нельзя рассматривать как критические эксперименты, устанавливающие справедливость квантовой механики или моделей со скрытыми параметрами.

Чтобы исключить и эту возможность[36], Ален Аспект с коллегами выполнили эффектный эксперимент, в котором выбор ориентации поляризационных анализаторов производится оптическими переключателями во время полета фотонов (см. рис. 8).

Рис. 8

Эксперимент потребовал 8 лет подготовки и был закончен только в 1982 году.

Каждый переключатель представляет собой небольшой сосуд с водой, в котором ультразвук периодически возбуждает стоячие волны. Эти волны играют роль дифракционной решетки, способной отклонять падающие фотоны. При возбуждении стоячей волны фотон отклоняется на анализатор с одной ориентацией, а при «выключении» стоячей волны путь фотона лежит к другому анализатору с иной ориентацией. Время, за которое свет проходит расстояние между анализаторами (40 нс), превышает время, необходимое для переключения с одной ориентации на другую (10 нс).

Поскольку скорость распространения сигнала не может превышать скорости света, то, согласно классическому подходу, в данном случае воздействие на одну часть системы не может повлиять на другую ее часть. Поэтому выбор ориентации для каждого анализатора не может повлиять на результаты наблюдений на другом анализаторе.

Эксперимент Аспекта показал, что данные о корреляции фотонов полностью согласуются с предсказаниями квантовой механики и более чем на 5 стандартных отклонений[37] отличаются от предельных значений, допускаемых теоремой Белла для любой локальной модели со скрытыми параметрами.

Подтверждение нелокальности окружающего нас мира недавно было получено[38] и в условиях, когда различие между теориями возникает не только в статистических предсказаниях, как в эксперименте Аспекта, но и в каждом отдельном событии. Это стало возможным благодаря исследованию корреляций между тремя частицами в так называемых ГХЦ-состояниях[39]. Модели, основанные на локальном реализме, предсказывали для этих состояний противоположный знак измеряемой величины, нежели предсказания квантовой механики. Эксперимент однозначно показал справедливость предсказаний КМ.

Выдающимся экспериментальным результатом последних лет является также доказательство[40] наличия нелокальных квантовых корреляций не только в системах с небольшим числом частиц, но и в макроскопических системах с громадным (около 1023) числом частиц.

Применительно к теме книги этот результат может означать, что любой объект остается в неразрывной связи с Целым вне зависимости от того, осознаёт он это или нет.

Ещё одно удивительное явление, связанное с нелокальностью, — квантовая телепортация, то есть возможность переноса на расстоянии квантового состояния одного объекта на другой объект.

Перемещения самого объекта при этом не происходит, передаются лишь свойства одного объекта другому. Разрушив квантовое состояние в одной точке пространства, мы можем создать точно такое же состояние в другой точке.

Это явление примечательно тем, что наряду с классическим каналом передачи информации в нём используется и нелокальный квантовый канал. Телепортация может быть осуществлена и в том случае, когда состояние телепортируемого объекта неизвестно.

Способ практической реализации этого эффекта был предложен в 1993 году группой Чарльза Беннета[41] (IBM), а само явление впервые наблюдалось[42] в работах австрийских исследователей, возглавляемых Антоном Цайлингером, а также итальянских под руководством Франческо Де Мартини.

Общая схема квантовой телепортации такова. Сначала требуется получить две коррелированные частицы. Затем проводится измерение состояния одной из них посредством взаимодействия с частицей, несущей информацию, которую нужно передать. Измерение стирает квантовую информацию в этой частице, однако в силу запутанности она немедленно оказывается на второй частице пары вне зависимости от ее удаленности. Эту информацию можно извлечь и передать другой частице, используя в качестве ключа результаты измерения, которые передаются по классическому (обычному) каналу связи.

В случае, когда телепортируемое состояние само по себе является запутанным, можно наблюдать еще более удивительный феномен. Представим, что в эксперименте типа показанного на рис. 6 запутанность пары фотонов не существует изначально, но может быть создана экспериментатором в результате использования эффекта квантовой телепортации. Очевидно, если мы запутанность не создаем, фотоны будут регистрироваться независимо друг от друга. В случае, когда запутанность фотонов создается до их регистрации, результат для нас также ясен: проведя измерение над одним фотоном пары, мы можем точно предсказать, каков будет результат измерения, проведенного над другим фотоном.

Однако что будет, если мы создадим запутанность между фотонами пары уже после их регистрации? Результат эксперимента[43] поражает воображение — он ничем не отличается от того, как если бы мы создали запутанность фотонов до их регистрации.

Таким образом, более позднее по времени действие влияет на результат более раннего измерения! Этот парадокс, неразрешимый в рамках классического подхода, находится в точном соответствии с предсказаниями КМ.

Отметим, что и здесь нет мгновенной передачи информации: квантовая информация передается мгновенно, однако, чтобы перевести эту информацию в классическую, необходимо передать результаты классических измерений. Это не может быть сделано со скоростью, выше скорости света.

Однако принципиальной невозможности передачи сигналов со сверхсветовой скоростью, вполне возможно, нет. По крайней мере, сообщение извне светового конуса[44] можно почувствовать мистически, в себе самом. Для этого принимающий сообщение должен иметь высокоразвитое сознание, позволяющее перемещаться по различным пространствам событий (об этом см. в следующих главах). Не исключено, что подобная передача информации возможна во время встреч во сне, которые может освоить почти каждый человек.

В заключение главы хочу сказать, что квантовая механика давно имеет дело не только с лабораторными опытами. Согласно имеющимся оценкам[45], 30 % национального продукта Соединённых Штатов базируется на изобретениях, ставших возможными благодаря квантовой механике. А сейчас уже имеются коммерческие предложения, использующие нелокальную связь между частицами: например, в предлагаемых на рынке системах квантовой криптографии, обеспечивающих абсолютную защиту связи[46]. Так что сказанное еще как относится к тому миру, в котором мы живем. А о том, какие следствия из квантовой картины мира применимы к общим вопросам мироздания, мы поговорим далее.

Подведём итоги этой главы.

• Физическим системам нельзя приписать (по крайней мере, всегда) характеристики как объективно существующие и независимые от проводимых измерений. Характеристики объекта «создаются» наблюдателем; вне акта наблюдения состояние любого объекта во многом является неопределенным. Частицы, образованные когда-то в одном акте, остаются в замкнутой системе единым объектом, вне зависимости от того, на каком расстоянии они находятся, и как давно произошло их разделение. Если с одной из них что-то происходит, то другие мгновенно меняют свои наблюдаемые свойства, и это происходит без материального носителя взаимодействия. Такие объекты не локализованы где-либо и обычно называются нелокальными (или квантово-коррелированными) структурами. Как мы убедимся в следующей главе, для них понятия времени и пространства, причины и следствия могут терять смысл.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×