Особенности строения суставно-связочного аппарата

Опорно-двигательный аппарат человека состоит из трех относительно самостоятельных систем: костной, связочно-суставной и мышечной. Костная система – это комплекс костей организма, образующих его твердую основу. Связочно-суставная система обеспечивает определенный объем движения звеньев скелета относительно друг друга и относительно площади опоры. Суставы – это прерывные, полостные, подвижные соединения костей. Каждый сустав состоит из суставной поверхности, суставной сумки и суставной полости, а также вспомогательного аппарата, к которому относятся суставные связки, суставные диски и мениски, синовиальные сумки. Мышца – это орган, основу которого составляют поперечнополостные мышечные волокна. Кроме того, в ее состав входят соединительная ткань, сосуды и нервы. Мышца окружена соединительным футляром – фасцией. Позвоночник человека обладает гибкостью благодаря прослойкам упругой хрящевой ткани между позвонками. Состояние межпозвоночных дисков во многом определяет уровень развития гибкости. Передвижения в пространстве во многом определяются строением и состоянием суставов нижних конечностей. Определенный объем двигательной активности в сочетании с упражнениями для укрепления нижних конечностей способствует улучшению их кровоснабжения. Под воздействием целенаправленных движений увеличивается количество синовиальной жидкости, что позволяет суставно-связочному аппарату более эффективно справляться с физической нагрузкой.

Состояние возбудимости и растяжимости мышц

Высокая возбудимость и лабильность мышц повышает их растяжимость, без чего невозможно проявление гибкости. Под воздействием тренировочных нагрузок происходят как морфологические, так и биохимические изменения в работающих мышцах, что приводит к повышению возбудимости и лабильности мышц. При повышении частоты раздражений увеличивается количество нервно-мышечных единиц, вовлекаемых в работу, и сила сокращений мышечных волокон становится больше. А это, в свою очередь, способствует увеличению растяжимости мышц и приросту показателей гибкости, но до определенной степени. Во время регулярных занятий физическими упражнениями увеличивается поперечник мышцы, повышается ее способность реагировать на раздражение максимальным числом сокращающихся нервно-мышечных единиц. Поэтому для достижения определенного уровня гибкости необходимо оптимальное сочетание силы мышц и их растяжимости. Достижение уровня оптимальной возбудимости и растяжимости мышц – важный компонент проявления максимальной гибкости.

Степень мышечно-суставной чувствительности

Анализ сигналов, связанных с изменением мышечного напряжения: растягиванием мышц и сухожилий или давлением на них различного характера, осуществляется проприорецепторами суставно-связочного аппарата. От проприорецепторов нервные волокна несут импульс к соответствующим отделам головного мозга. Возбуждение чувствительных нервов мышечных веретен происходит при растяжении. Поэтому чем выше чувствительность, тем выше уровень проявления гибкости. Степень развития мышечной чувствительности имеет индивидуальный характер, зависит от природных возможностей человека, что позволяет ее совершенствовать. При выполнении движений, связанных с проявлением гибкости, происходит повышение проприорецептивной чувствительности от выработки тонкой дифференцировки сигналов, что позволяет увеличивать прирост показателей гибкости с учетом конкретных ее проявлений. Знание и учет компонентов, раскрывающих физиологический механизм гибкости, дает возможность более целенаправленно подбирать упражнения для развития данного качества в зависимости от характера двигательной деятельности.

Классификация видов гибкости

К основным видам гибкости относят динамическую гибкость, проявляемую при произвольных движениях самого человека, и статическую гибкость, имеющую место при фиксированных положениях тела.

Различают также гибкость активную и пассивную. Активной называют гибкость, требующую дополнительных усилий. Активная гибкость непосредственно связана с силой мышц. Это вызвано необходимостью преодоления сопротивления суставно-связочного аппарата. В отличие от активной гибкости, имеющей целью растягивание мышц, пассивная гибкость направлена на повышение эластичности суставно-связочного аппарата. Плотность суставно-связочного аппарата гораздо выше, чем плотность мышц, и человеку трудно без посторонней помощи развивать эту разновидность гибкости. Поэтому пассивную гибкость определяют как гибкость, проявляемую под воздействием внешних сил.

Различают также общую и специальную гибкость.

Общая гибкость – это подвижность во всех суставах, позволяющая выполнять разнообразные движения с большой амплитудой.

Специальная гибкость – предельная подвижность в отдельных суставах, определяющая эффективность спортивной или профессионально-прикладной деятельности.

По аналитическому признаку проявления гибкости можно выделить гибкость шейных позвонков, плечевых суставов, поясничной части позвоночника, тазобедренного, коленного и голеностопного суставов. Гибкость в различных суставах имеет неодинаковое значение. Наибольшая нагрузка чаще всего приходится на поясничную часть и тазобедренные суставы. Как мы видим, гибкость отмечается большим разнообразием ее проявлений, требующих значительного двигательного опыта. Поэтому при ее формировании нужно уделять внимание всем ее разновидностям, делая акцент на специфических для конкретного вида деятельности.

Факторы, влияющие на развитие гибкости

К основным факторам, влияющим на развитие гибкости, относятся морфофункциональные особенности работающих мышц; изменение ритма двигательного действия; психоэмоциональное состояние; температура мышц; температура окружающей среды; время суток, вид предыдущей мышечной деятельности.

Морфофункциональные особенности работающих мышц

Уровень изменения морфологических, биохимических и функциональных особенностей работающих мышц – важный фактор повышенной гибкости. В процессе активной мышечной деятельности увеличивается содержание сократительных белков, повышается количество миоглобина, возрастают кислородная емкость мышц и интенсивность окислительных процессов. Под воздействием физической нагрузки происходят морфологические и биохимические изменения в работающих мышцах, выявляются функциональные сдвиги, повышающие возбудимость и лабильность мышц. Все эти изменения способствуют увеличению растяжимости мышц и приросту гибкости.

Изменение ритма двигательных действий

Ритм движений имеет большое значение для достижения определенной рационализации двигательной активности человека. Ритмичные движения поддерживают стабильный уровень возбудимости мышц, что является благоприятным фактором для повышения их эластичности. При аритмичных движениях возбудимость мышц снижается, что приводит к уменьшению их эластичных свойств. Например, выполняя махи ногой вначале с малой амплитудой и постепенно увеличивая ее до максимальной, занимающийся добивается большого прироста активной гибкости.

Психоэмоциональное состояние

Положительные эмоции активизируют деятельность вегетативных органов, повышают газообмен, увеличивают частоту сердечных сокращений. Все это позитивно сказывается на состоянии возбудимости мышц, их эластичности и упругости. Упражнения для развития гибкости необходимо выполнять в атмосфере положительных эмоций, что стимулирует гормональную деятельность, обеспечивает улучшение регуляторных процессов.

Температура мышц

Состояние температуры мышц также существенно влияет на увеличение показателей гибкости. Зависимость эластичных свойств мышц от температуры определяется интенсивностью обмена веществ, скоростью окислительных процессов. В хорошо разогретых мышцах сильнее циркулирует кровь, поэтому предварительная разминка, направленная на подготовку мышц к основной физической нагрузке, – необходимое условие эффективности занятий на развитие гибкости.

Температура окружающей среды

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×