объединив классы этой системы в более крупные подразделения. Одно из них, как и Ламарк, он назвал «позвоночные». Однако Кювье не свалил в кучу всех остальных животных. В группе беспозвоночных он выделил три подгруппы: членистоногие (животные с внешним скелетом и конечностями, как у насекомых и ракообразных), мягкотелые (животные с раковиной без членистых конечностей, такие, как моллюски и улитки) и лучистые (все остальные беспозвоночные животные).

Эти крупные группы Кювье назвал типами. С тех пор стало известно свыше тридцати типов растений и животных. Расширил свои границы и тип позвоночных: после того как в него включили некоторых примитивных животных без позвоночного столба, он получил название типа хордовых.

Занимаясь сравнительной анатомией, Кювье основывал свой принцип классификации не на внешнем сходстве, как Линней, а на тех признаках, которые свидетельствовали о связи структуры и функции. Кювье применил свой принцип классификации преимущественно к животным, а в 1810 г. швейцарский ботаник Августин Пирамус де Кандолль (1778–1841) использовал его и для классификации растений.

Кювье не мог не включить в свою систему классификации и окаменелостей. Недаром он был способен восстановить целый организм на основе отдельных частей, видел, что окаменелости — не просто предметы, похожие на живые организмы, они обладают признаками, которые позволяют поместить их в тот или иной из установленных типов и даже определить их место в пределах подгрупп данных типов. Так Кювье распространил биологическую науку на далекое прошлое, заложив основы палеонтологии — науки об исчезнувших формах жизни.

Кювье установил связь между ископаемыми формами и слоями земной коры, в которой они были найдены: показал, что при переходе от древнего к более молодому слою строение ископаемых форм усложняется, а в некоторых случаях, расположив находки в определенном порядке, можно проследить и постепенные изменения. Окаменелости с очевидностью свидетельствовали об эволюции видов.

Однако теоретические взгляды Кювье находились в резком противоречии с полученными фактами. Согласно Кювье, Земля периодически претерпевала грандиозные катастрофы, во время которых уничтожалось все живое, после чего появлялись новые формы жизни, резко отличные от существовавших прежде. Современные формы (в том числе и человек) были сотворены после самой последней катастрофы. Согласно этой гипотезе, не требовалось признания эволюционного процесса, чтобы объяснить существование окаменелостей. Кювье допускал вероятность четырех катастроф. Однако, по мере того как обнаруживались все новые и новые ископаемые, вопрос осложнялся: кое-кому из последователей Кювье пришлось допустить существование двадцати семи катастроф.

Теория катастроф не согласовывалась с униформизмом Хэттона. В 1830 г. шотландский геолог Чарлз Лайель начал публикацию трехтомного труда «Основы геологии», в котором он излагал взгляды Хэттона и приводил доказательства в пользу того, что Земля претерпевала лишь постепенные и некатастрофические изменения. Продолжавшееся изучение окаменелостей говорило в пользу теории Лайеля: слоев, где была бы уничтожена вся жизнь, не обнаруживалось, более того, некоторые формы не только выживали в период предполагаемых катастроф, но и сохраняли свое строение почти неизменным на протяжении многих миллионов лет.

Появление книги Лайеля нанесло теории катастроф — последнему научному оплоту антиэволюционной теории — смертельный удар. Так к середине XIX столетия уже была подготовлена почва для создания научной теории эволюции.

Глава V Химия клетки

Газы и жизнь

Классификация животных и растений и происшедшие к этому времени коренные изменения в области химии, в частности усовершенствование методики, дали толчок развитию нового, чрезвычайно перспективного направления биологии — исследованиям на живых организмах. Особенно наглядно это видно на ранних этапах изучения относительно доступной для экспериментов функции живого организма — процесса пищеварения.

В XVII в. существовали серьезные разногласия по поводу того, является ли пищеварение физическим процессом измельчения пищи в желудке, как утверждал Борелли, или химическим процессом, происходящим под действием желудочного сока, как предполагал Сильвий.

Французский естествоиспытатель Рене Антуан Реомюр (1683–1757) нашел пути разрешения этого вопроса. Он поместил мясо в маленький металлический цилиндр, закрытый с обеих сторон металлической сеткой, и заставил ястреба проглотить его. Цилиндр защищал мясо от механического перетирания, а сетка не препятствовала проникновению желудочного сока. Ястребы обычно отрыгивают неперевариваемые остатки пищи, и, когда ястреб Реомюра отрыгнул цилиндр, мясо внутри него оказалось частично переваренным. Реомюр проделал другой опыт — он поместил в цилиндр губку. Желудочный сок, которым пропиталась губка, выжали и смешали с мясом. Мясо постепенно растворилось. Вывод был один: пищеварение — химический процесс. Так была окончательно доказана роль химии в жизненных процессах.

Изучение газов, начатое Ван-Гельмонтом, в XVIII в. стало увлекательной областью для исследований. Возникла необходимость установить роль различных газов в жизни организмов. В 1727 г. увидела свет книга одного из первых приверженцев экспериментального направления в биологии английского ботаника и химика Стивена Гейлса (1677–1761), в которой описывались опыты по измерению темпа роста растений и давления соков. Практически Гейлса можно считать основателем физиологии растений. Экспериментируя с различными газами, Гейлс впервые установил, что один из них (углекислота — CO2) каким-то образом участвует в питании растений. Этим самым он изменил представление, что ткани растений образуются только из воды, как утверждал Ван-Гельмонт. Следующий шаг сделал полвека спустя английский химик Джозеф Пристли (1733–1804). В 1774 г. он открыл кислород. Ученый обнаружил, что этим газом приятно дышать, что он повышает активность животных и что растения обладают способностью увеличивать содержание кислорода в воздухе. Голландский врач и естествоиспытатель Ян Ингенхауз (1730–1799) установил, что процесс потребления растением углекислого газа и образования кислорода происходит только на свету.

Величайший химик века француз Антуан Лоран Лавуазье (1743–1794) показал огромное значение точных измерений в химии и использовал их для обоснования теории горения — химического соединения горючего вещества с кислородом воздуха. Эта теория с тех пор была признана единственно правильной. Лавуазье обнаружил также, что в воздухе наряду с кислородом содержится азот — газ, который не поддерживает горения.

«Новую химию» Лавуазье попробовали применить к живым организмам. Горящая свеча, потребляя кислород и выделяя углекислый газ, который образуется путем соединения углерода свечи с кислородом воздуха, гаснет под стеклянным колпаком, когда весь или почти весь кислород под ним израсходован; в тех же условиях мышь задыхается и гибнет, потребляя кислород и выделяя углекислый газ (последний получается в результате соединения углерода в тканях мыши с кислородом воздуха). Итак, растения поглощают углекислый газ и выделяют кислород, в то время как животные поглощают кислород, а выделяют углекислый газ. Таким образом поддерживается химический баланс земной атмосферы, содержащей 21 % кислорода и 0,03 % углекислого газа.

На основе этих фактов Лавуазье предположил, что дыхание представляет собой форму горения. Кроме того, в опытах Лавуазье свеча и мышь, потребляя определенное количество кислорода, выделяли соответствующее количество тепла. Техника измерений в этих опытах позволяла получить лишь приближенные результаты, но все же они подтверждали взгляды Лавуазье.

Это сильно укрепляло материалистическую концепцию жизни, так как показывало, что в живом и в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×