[x]. Две совокупности подпрограмм могут использовать одноименные общие блоки, что приведет к конфликту, если одной из программ понадобится как первый, так и второй блок. Смена имени блока вызовет трудности у других программ.

[x]. Как инициализировать сущности общего блока, такие как ready? Из-за отсутствия инициализации по умолчанию, ее нужно выполнять в особом модуле, называемом блоком данных (block data unit). В Fortran 77 допускаются именованные модули, что позволяет разработчикам объединять глобальные данные разных общих блоков. При этом есть немалый риск несогласованности инициализации и объявления глобальных объектов.

Принцип решения этой задачи в языке C по сути не отличается от решения Fortran 77. Признак ready нужно описать как 'внешнюю' переменную, общую для нескольких 'файлов' (единиц компиляции языка). Объявление переменной с указанием ее значения может содержать только один файл, остальные, используя директиву extern, подобную COMMON в Fortran 77, лишь заявляют о необходимости доступа к переменной. Обычно такие определения объединяют в 'заголовочные' (header) .h-файлы, которые соответствуют блоку данных в Fortran. При этом наблюдаются те же проблемы, отчасти решаемые утилитами make, призванными отслеживать возникающие зависимости.

Решение может быть близко к тому, что предлагают модульные языки наподобие Ada или Modula 2, подпрограммы которых можно объединять в модули более высокого уровня. В Ada эти модули называют 'пакетами' (package). Если все подпрограммы, использующие группу взаимосвязанных глобальных объектов, собраны в одном пакете, то соответствующие признаки ready можно описать в этом же пакете и здесь же выполнить их инициализацию. Однако этот подход (применимый также в C и Fortran 77) не решает проблему инициализации автономных библиотек. Еще более деликатный вопрос связан с тем, как поступать с глобальными объектами, разделяемых подпрограммами разных независимых модулей. Языки Ada и Modula не дают простого ответа на этот вопрос.

Механизм 'однократных' методов, сохраняя независимость классов, допускает контекстно- зависимую инициализацию.

Строковые константы

Строковые константы (а точнее, разделяемые строковые объекты) объявляются в языках программирования в манифестной форме с использованием двойных кавычек. Это находит отражение в правилах языка, и как следствие любой компилятор предполагает присутствие в библиотеке класса STRING. Это - своего рода компромисс между 'полярными' решениями.

[x]. STRING рассматривается как встроенный тип, каким он является во многих языках программирования. Это означает введение в язык операций над строками: конкатенации, сравнения, выделения подстроки и других, что усложняет язык. Преимуществом введения такого класса является возможность снабдить его операции точными спецификациями, благодаря утверждениям, и способность порождать от него другие классы.

[x]. STRING рассматривается как обычный класс, создаваемый разработчиком. Тогда задавать его константы в манифестной форме [S1] уже нельзя, от разработчиков потребуется соблюдение формата [S2]. Кроме того, данный подход препятствует оптимизации компилятором таких операций, как прямой доступ к символам строки.

Поэтому строки STRING, как и массивы ARRAY, ведут 'двойную жизнь', принимая вид предопределенного типа при задании констант и оптимизации кода, и становясь классом, когда речь заходит о гибкости и универсальности.

Unique-значения и перечислимые типы

Pascal и производные от него языки допускают описание переменной вида

code: ERROR

где ERROR - это 'перечислимый тип':

type ERROR = (Normal, Open_error, Read_error)

Переменная code может принимать только значения типа ERROR. Мы уже видели, как добиться того же самого в ОО-нотации: при выполнении кода результат будет почти идентичен, поскольку Pascal-компиляторы традиционно реализуют значения перечислимого типа как целые числа. Введение объявления unique не порождает нового типа. Понятие перечислимых типов, кажется, трудно совместить с объектным подходом. Все наши типы основаны на классах, характеризующих реально осуществимые операции и их свойства. Перечислимые типы не обладают такими характеристиками, а представляют обычные множества чисел. Проблемы с этими типами данных возникают и в необъектных языках.

[x]. Статус символических имен не вполне ясен. Могут ли два перечислимых типа иметь общие символические имена (скажем, Orange в составе типов FRUIT и COLOR)? Можно ли их экспортировать как переменные и распространять на них те же правила видимости?

[x]. Значения перечислимых типов трудно получать и передавать программам, написанным на других языках, к примеру, C и Fortran, не поддерживающих такое понятие. В тоже время значения, описанные как unique, - это обычные числа, работа с которыми не вызывает никаких проблем.

[x]. Перечислимые типы данных могут требовать специальных операторов. Так, можно представить себе оператор next, возвращающий следующее значение и неопределенный для последнего элемента перечисления. Помимо него потребуется оператор, сопоставляющий элементу целое значение (индекс). В итоге синтаксическое и семантическое усложнение языка кажется непропорциональным вкладу этого механизма.

Объявления перечислимых типов в Pascal и Ada обычно принимают вид:

type FIGURE_SORT = (Circle, Rectangle, Square, ...)

и используются совместно с вариантными полями записей:

FIGURE =

record

perimeter: INTEGER;

... Другие атрибуты, общие для фигур всех типов ...

case fs: FIGURE_SORT of

Circle: (radius: REAL; center: POINT);

Rectangle:... Специальные атрибуты прямоугольника ...;

...

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×