4) формирование автоматизированной генерации, хранения, обработки и использования знаний с помощью новейшей информационной техники и технологии.

5) информационные технологии, приобретая глобальный характер, охватывают все сферы социальной деятельности человека;

6) образование информационного единства всей человеческой цивилизации;

7) реализация свободного доступа каждого человека к информационным ресурсам всей цивилизации;

8) решение гуманистических принципов управления обществом и воздействия на окружающую среду.

Помимо перечисленных положительных результатов процесса информатизации общества, возможны и негативные тенденции, сопровождающие этот процесс:

1) чрезмерное влияние средств массовой информации;

2) вторжение информационных технологий в частную жизнь человека;

3) сложность адаптации некоторых людей к информационному обществу;

4) проблема качественного отбора достоверной информации.

В настоящий момент ближе всех стран к информационному обществу находятся США, Япония, Англия, страны Западной Европы.

1.3. Системы счисления

Система счисления – это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Существуют системы позиционные и непозиционные.

В непозиционных системах счисления вес цифры не зависит от позиции, которую она занимает в числе. Так, например, в римской системе счисления в числе XXXII (тридцать два) вес цифры X в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число.

Любая позиционная система характеризуется своим основанием. Основание позиционной системы счисления – это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание можно принять любое натуральное число – два, три, четыре, шестнадцать и т. д. Следовательно, возможно бесконечное множество позиционных систем.

Десятичная система счисления

Пришла в Европу из Индии, где она появилась не позднее VI века н. э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, однако информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т. д. Самая правая цифра числа показывает число единиц, вторая справа – число десятков, следующая – число сотен и т. д.

Двоичная система счисления

В этой системе всего две цифры – 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т. д. Самая правая цифра числа показывает число единиц, следующая цифра – число двоек, следующая – число четверок и т. д. Двоичная система счисления позволяет закодировать любое натуральное число – представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически.

Восьмеричная система счисления

В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает, как и в десятичном числе, просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем – 64 и т. д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.

Шестнадцатеричная система счисления

Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означает просто единицу. Та же цифра 1 в следующем – 16 (десятичное), в следующем – 256 (десятичное) и т. д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное). Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогично тому, как это делается для восьмеричной системы.

Таблица 1. Соответствие между первыми несколькими натуральными числами всех трех систем счисления

1.4. Кодирование информации

В настоящее время во всех вычислительных машинах информация представляется с помощью электрических сигналов. При этом возможны две формы ее представления – в виде непрерывного сигнала (с помощью сходной величины – аналога) и в виде нескольких сигналов (с помощью набора напряжений, каждое из которых соответствует одной из цифр представляемой величины).

Первая форма представления информации называется аналоговой, или непрерывной. Величины, представленные в такой форме, могут принимать принципиально любые значения в определенном диапазоне. Количество значений, которые может принимать такая величина, бесконечно велико. Отсюда названия – непрерывная величина и непрерывная информация. Слово непрерывность отчетливо выделяет основное свойство таких величин – отсутствие разрывов, промежутков между значениями, которые может принимать данная аналоговая величина. При использовании аналоговой формы для создания вычислительной машины потребуется меньшее число устройств (каждая величина представляется одним, а не несколькими сигналами), но эти устройства будут сложнее (они должны различать значительно большее число состояний сигнала). Непрерывная форма представления используется в аналоговых вычислительных машинах (АВМ). Эти машины предназначены в основном для решения задач, описываемых системами дифференциальных уравнений: исследования поведения подвижных объектов, моделирования процессов и систем, решения задач параметрической оптимизации и оптимального управления. Устройства для обработки непрерывных сигналов обладают более высоким быстродействием, они могут интегрировать сигнал, выполнять любое его функциональное преобразование и т. п. Однако из-за сложности технической реализации устройств выполнения логических операций с непрерывными сигналами, длительного хранения таких сигналов, их точного измерения АВМ не могут эффективно решать задачи, связанные с хранением и обработкой больших объемов информации.

Вторая форма представления информации называется дискретной (цифровой). Такие величины, принимающие не все возможные, а лишь вполне определенные значения, называются дискретными (прерывистыми). В отличие от непрерывной величины, количество значений дискретной величины всегда будет конечным. Дискретная форма представления используется в цифровых электронно-вычислительных машинах (ЭВМ), которые легко решают задачи, связанные с хранением, обработкой и передачей больших объемов информации.

Для автоматизации работы ЭВМ с информацией, относящейся к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования.

Кодирование – это представление сигнала в определенной форме, удобной или пригодной для последующего использования сигнала. Говоря строже, это правило, описывающее отображение одного набора знаков в другой набор знаков. Тогда отображаемый набор знаков называется исходным алфавитом, а набор знаков, который используется для отображения, – кодовым алфавитом, или алфавитом для кодирования. При этом кодированию подлежат как отдельные символы исходного алфавита, так и их комбинации. Аналогично для построения кода используются как отдельные символы кодового алфавита, так и их комбинации.

Совокупность символов кодового алфавита, применяемых для кодирования одного символа (или одной комбинации символов) исходного алфавита, называется кодовой комбинацией, или, короче, кодом символа.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×