двигаться вокруг положительно заряженного атомного ядра.

Чем больше заряд ядра, тем многочисленнее электроны. В простейшем — водородном — атоме электрон только один. А в атоме урана, где заряд ядра в 92 раза больше, находится соответственно 92 электрона.

Благодаря тому, что атом ничтожно мал, электрические силы очень крепко привязывают электроны к ядрам.

Особенно прочны внутренние, наиболее близкие к ядру оболочки.

А на наружных оболочках электроны обычно ведут себя весьма «общительно». Они охотно устанавливают связи со своими соседями из других атомов, обмениваются с ними местами, порциями света.

Горит свеча, сияет электрическая лампочка, варится на плите суп, кипит сталь в мартене, на химическом комбинате клокочет смесь реактивов, проявляется фотопластинка, растет дерево, движется, мыслит человек — все это в конечном итоге сводится к процессам в наружных электронных оболочках атомов, к движению электронов, почему-либо освобожденных этими оболочками..

Любопытно, что по заряду ядра — следовательно, по количеству электронов, и формам электронных оболочек— атомы насчитывают всего 102 вида (из них

11 созданы человеком искусственным путем). Но взаимодействие их сложно и многогранно. Именно кипучая жизнь электронных оболочек создала великое разнообразие тел и веществ окружающей нас природы.

А как ведет себя атомное ядро?

Совсем по-другому!

В обычных условиях оно не принимает участия в буйном хороводе своей электронной свиты.

БАЛЛАСТ В ВЕЩЕСТВЕ

На столе каравай хлеба весом в 4 килограмма. Мы знаем, что в конечном счете состоит он из электронов и ядер разных атомов, главным образом углеродных.

Как вы думаете, сколько весят электроны и атомные ядра каравая в отдельности? Ответим на этот вопрос сразу. Ядра — примерно 3 килограмма 999 граммов, а электроны — всего лишь 1 грамм.

Между тем энергию нашему организму дают только электроны, да и то не все, а главным образом находящиеся в наружных атомных оболочках. Лишь там, как вы уже знаете, берут свое начало химические процессы — в частности и те, что служат источником жизни. Ядра же непосредственного участия в этой полезной работе не принимают, значит, в каравае хлеба 993/4 процента вещества не вносят ни эрга энергии и с этой точки зрения представляют собой бесполезный балласт.

Любопытный факт. Биологи и биофизики в наши дни делают попытки осуществить так называемое электронное питание живых тканей. В ткань взамен атомов вводится крохотная доза свободных электронов. По предварительным данным, такие опыты удаются. Можно думать, что когда-нибудь электронное питание войдет в практику животноводства — разумеется, как некоторая добавка к обычному кормлению, ибо, кроме энергии, организму нужно и вещество. Но едва ли даже в будущем этот способ питания применит человек. Мало надежды на то, что наши внуки предпочтут—пусть даже отлично «сервированную» — порцию свободных электронов обыкновенной яичнице!

С ненужным балластом мы сталкиваемся во всех обычных процессах — при сжигании угля на электростанциях, нефти в топках тепловозов и кораблей. Выходит что любое органическое топливо более чем на 99,75 процента негорюче.

Теперь нам становится ясно, почему в естественных земных условиях вещество столь скупо отдает энергию, которая, как указал Эйнштейн, содержится в нем в колоссальных количествах. Причина в том, что лишь электроны атомов активны, в том, что только тысячные доли всей массы вещества могут вступать в энергетические реакции. Остальное же дремлет в тиши атомных недр.

Так обстоит дело в подавляющем большинстве случаев.

Но нет правил без исключения.

Ещё более полувека назад Эйнштейн указал на земное явление, в котором, как он надеялся, способна подтвердиться формула:

Е = mc2 .

«Не исключена возможность того, — писал ученый,— что проверка теории может удаться для... солей радия». Соли радия! Странно светящиеся таинственным зеленоватым сиянием, незаметно обжигающие... Сколько с ними связано незабываемых страниц истории науки! Знаменитое открытие Анри Беккереля, случайно нашедшего вещество, которое излучает энергию прямо из собственных глубин, не зарядившись никаким энергетическим запасом извне; бесславные годы «кризиса науки», трудовые ночи Пьера Кюри и Марии Склодовской-Кюри, проведённые в сарае с дырявой крышей над изучением этих непонятных препаратов; открытие радия; радиоактивность...

Словно крошечные осколочки Солнца, крупицы радия из года в год, из века в век испускают невидимые лучи.

Что же происходит в радии?

Там «пробуждаются ото сна» и отдают крохи своей огромной энергии атомные ядра.

„СПЯЩЕЕ' ЯДРО

Начало 30-х годов нашего века — пора открытий, ознаменовавших рождение физики атомного ядра. Важнейшие исследования радиоактивности вели тогда супруги Фредерик и Ирэн Жолио-Кюри. Английский физик Чедвик, ученик знаменитого Розерфорда, первого разведчика атомных недр, открыл нейтроны — частицы, лишенные электрического заряда, а по массе примерно равные ядрам водорода (протонам).

В 1932 году советские физики Д. Д. Иваненко и Е. Н. Гапон поместили в одном из научных журналов коротенькую заметку, которая затем приобрела значение важной вехи в истории науки. В заметке содержалось предположение о строении атомного ядра. Какие же частицы входят в его состав? Протоны и нейтроны,— сказали советские физики. Заряд ядра равен числу протонов, а атомный вес — сумме чисел протонов и нейтронов.

Вскоре эта гипотеза была подробно разработана немецким физиком В. Гейзенбергом и подтверждена экспериментом.

Может показаться странным, почему протоны в ядре выдерживают соседство друг с другом: ведь они должны с огромной силой отталкиваться, ибо наделены одноименным зарядом.

Ответ прост. Частицы ядра стянуты колоссальными силами притяжения, превосходящими электростатическое отталкивание. Насколько велики эти силы, можно судить хотя бы по тому, что связанное ими ядерное вещество в десятки тысяч миллиардов раз тяжелее свинца и в миллионы раз прочнее любой брони.

Вначале природа ядерных сил была сплошной загадкой. Но постепенно теоретики нашли им вполне разумное, с точки зрения высшей физики, но очень трудное для популяризатора объяснение.

В детстве наши читатели наверняка любили меняться игрушками, монетами, марками. И едва ли опытный меняла станет спорить против такого утверждения: для интенсивного обмена приходится быть рядом с тем, с кем меняешься, — скажем, жить с ним в одном доме или учиться в одном классе. Чем ближе меняющиеся, тем чаще обмен. Это непреложный закон нашего детства.

Можно считать, что протоны и нейтроны атомного ядра — тоже любители меняться. Им по вкусу чрезвычайно недолговечные и не очень массивные частички, которые называются пи-мезонами. Вот как происходит обмен пи-мезонами в ядре тяжелого водорода — дейтоне, который состоит из протона и

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×