most exciting moment the Commander-in-Chief of the British forces dropped completely out of the world. After four days at sea, the ship called at Madeira where there was no news. Twelve days passed in silence and only when the ship was two days from Cape Town was another ship sighted coming from the ‘land of knowledge’ and bearing vital news. Signals”—visual signals—“were made to the steamer, a tramp, asking for news, upon which she altered course to pass within a hundred yards of the Dunottar Castle, and held up a blackboard bearing the words, ‘Three battles. Penn Symonds killed.’ Then she steamed on her way, and the Commander-in- Chief, whose troops had been in action without his knowledge, was left to meditate upon this very cryptic message.”

BACK FROM THE ALPS, Marconi immediately set to work devising equipment to transform his idea into reality, with nothing to guide him but an inner conviction that his vision could be achieved. His mother recognized that something had changed. Marconi’s tinkering had attained focus. She saw too that now he needed a formal space dedicated to his experiments, though she had only a vague sense of what it was that he hoped to achieve. She persuaded her husband to allow Marconi to turn a portion of the villa’s third-floor attic into a laboratory. Where once Marconi’s ancestors had raised silkworms, now he wound coils of wire and fashioned Leyden jars that snapped blue with electrical energy.

On hot days the attic turned into a Sahara of stillness. Marconi grew thin, his complexion paler than usual. His mother became concerned. She left trays of food on the landing outside the attic door. Marconi’s father, Giuseppe, grew increasingly unhappy about Marconi’s obsession and its jarring effect on family routine. He sought to reassert control by crimping his already scant financial support for his son’s experiments. “Giuseppe was punishing Guglielmo in every way he knew,” wrote Degna. “Characteristically he considered money a powerful weapon.” At one point Marconi sold a pair of shoes to raise money to buy wire and batteries, but this clearly was a symbolic act meant to garner sympathy from his mother, for he had plenty of shoes to spare.

In his attic laboratory Marconi found himself at war with the physical world. It simply was not behaving as he believed it should. From his reading, Marconi knew the basic character of the apparatus he would need to build. A Leyden jar or Ruhmkorff coil could generate the required spark. For a receiver, Marconi built a coherer of the kind Branly had devised and that Lodge had improved, and he connected it to a galvanometer, a device that registered the presence of an electrical current.

But Marconi found himself stymied. He could generate the spark easily but could not cause a response in his coherer. He tinkered. He tried a shorter tube than that deployed by Lodge, and he experimented with different sizes and combinations of filings. At last he got a response, but the process proved fickle. The coherer “would act at thirty feet from the transmitter,” Marconi wrote, but “at other times it would not act even when brought as close as three or four feet.”

It was maddening. He grew thinner, paler, but kept at it. “I did not lose courage,” he wrote. But according to Degna, “he did lose his youth” and took on a taciturnity that, by her account, would forever color his demeanor.

He wanted distance. He knew that if his telegraphy without wires was ever to become a viable means of communication, he would need to be able to send signals hundreds of miles. Yet here in his attic laboratory he sometimes could not detect waves even an arm’s length from the spark. Moreover, established theory held that transmitting over truly long distances, over the horizon, simply was not possible. The true scholar-physicists, like Lodge, had concluded that waves must travel in the same manner as light, meaning that even if signals could be propelled for hundreds of miles, they would continue in a straight line at the speed of light and abandon the curving surface of the earth.

Another man might have decided the physicists were right—that long-range communication was impossible. But Marconi saw no limits. He fell back on trial and error, at a level of intensity that verged on obsession. It set a pattern for how he would pursue his quest over the next decade. Theoreticians devised equations to explain phenomena; Marconi cut wire, coiled it, snaked it, built apparatus, and flushed it with power to see what would happen, a seemingly mindless process but one governed by the certainty that he was correct. He became convinced, for example, that the composition of the metal filings in the coherer was crucial to its performance. He bought or scavenged metals of all kinds and used a chisel to scrape loose filings of differing sizes, then picked through the filings to achieve uniformity. He tried nickel, copper, silver, iron, brass, and zinc, in different amounts and combinations. He inserted each new mixture into a fragile glass tube, added a plug of silver at each end, then sealed the apparatus and placed it within his receiving circuit.

He tested each mixture repeatedly. No instrument existed to monitor the strength or character of the signals he launched into space. Instead, he gauged performance by instinct and accident. He did this for days and weeks on end. He tried as many as four hundred variations before settling on what he believed to be the best possible combination for his coherer: a fine dust that was 95 percent nickel and 5 percent silver, with a trace of mercury.

At first he tried to use his transmitter to ring a bell at the far side of his laboratory. Sometimes it worked, sometimes not. He blamed the Branly-style coherer, calling it “far too erratic and unreliable” to be practical. Between each use he had to tap it with his finger to return the filings to their nonconducting state. He tried shrinking the size of the tube. He emptied thermometers, heated the glass, and shaped it. He moved the silver plugs within the tube closer and closer together to reduce the expanse of filings through which current would have to flow, until the entire coherer was about an inch and a half long and the width of a tenpenny nail. He once stated that it took him a thousand hours to build a single coherer. As a future colleague would put it, he possessed “the power of continuous work.”

Marconi’s obsession with distance deepened. He moved the bell to the next room and discovered how readily the waves passed through obstacles. As he worked, a fear grew within him, almost a terror, that one day he would awaken to discover that someone else had achieved his goal first. He understood that as research into electromagnetic waves advanced, some other scientist or inventor or engineer might suddenly envision what he had envisioned.

And in fact he was right to be concerned. Scientists around the world were conducting experiments with electromagnetic waves, though they still focused on their optical qualities. Lodge had come closest, but inexplicably had not continued his research.

THE SCAR

THE YOUNG WOMAN WHO NOW presented herself at the Brooklyn, New York, office of Dr. Hawley Harvey Crippen, and who was destined to cause such tumult in his life, was named Cora Turner. At least that was her name for the present. She was seventeen years old, Crippen thirty and already a widower, but the distance between them was not as great as chronology alone suggested, for Miss Turner had the demeanor and physical presence of a woman much older. Her figure was full and inevitably drew forth the adjective voluptuous. Her eyes were alight with a knowledge not of books but of how hardship made morality more fungible than the clerics of Brooklyn’s churches might have wanted parishioners to believe. She was a patient of the physician who owned the practice, a Dr. Jeffrey, and she had come in for a problem described with Victorian reticence as “female.”

Crippen was lonely, and genetic fate had conspired to keep him that way. He was not handsome, and his short stature and small bones conveyed neither strength nor virility. Even his scalp had betrayed him, his hair having begun a brisk retreat years before. He did have a few assets, however. Though he was nearsighted, his eyes were large and conveyed warmth and sympathy—provided he was wearing his glasses. Lately he had grown a beard in a narrow V, which imparted a whiff of continental sophistication. He dressed well, and the sharp collars and crisp-cut suits that tailors of the day favored gave him definition against the passing landscape, the way a line of India ink edged a drawing. Also, he was a doctor. Medicine in this era was becoming a more scientific profession, one that conveyed intellect and character, and, increasingly, prosperity.

Crippen fell for Cora Turner immediately. He saw her youth as no obstacle and began courting her, taking her

Вы читаете Thunderstruck
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×