На корпусе ДД обычно печатают инфюрмацию о том, на какие уровни давления настроен прибор. Уровни срабатывания и отпускания (рис. 6.9) обозначены либо в миллиметрах водного столба (мм Н20 — мм вод. ст. равен = 1 кгс/м2) либо в миллибарах.

Рис. 6.9. Обозначение величин давления на датчике

Все ДД имеют на верхней части корпуса регулировочные винты, законтренные краской — так их фиксируют после настройки на заводе-изготовителе. А теперь посмотрим, как работает малогабаритный ДД, который присутствует на рис. 6.4 в правом верхнем углу. На рис. 6.10 этот прибор также показан в разобранном виде.

Рис. 6.10. Устройство малогабаритного одноуровневого датчика давления

Внутри также, как и у других ДД, есть и резиновая диафрагма (мембрана), и пластмассовая площадка с нажимным наконечником, но нет коромысла, так как в этом ДД только одна контактная пара. Но прибор имеет на верхней части корпуса четыре контакта вместо трех. Зачем четвертый?

Дело в том, что в многоуровневых ДД есть ограничитель хода у нажимного наконечника, а в этом приборе после срабатывания контактов у нажимного наконечника (и у диафрагмы) еще есть запас хода, и при дальнейшем повышении уровня воды в баке (допустим, открылся и не закрывается клапан подачи воды), включается дополнительный четвертый контакт. Он в свою очередь подает напряжение питания на сливной насос-помпу, и начинается откачка воды или моющего раствора из бака.

Пожалуй, стоит обратить внимание еще на одну конструкцию. Этот ДД также показан на рис. 6.4 в левом верхнем углу. Особенность его в том, что корпус этого прибора состоит из двух «половинок», соединенных вместе, то есть это двухуровневый ДД. В каждой «половинке» — в нижней части корпуса — есть резиновая диафрагма со своим нажимным наконечником и своей контактной парой. Воздух через штуцер поступает в обе «половинки» корпуса под диафрагмы. Очередность срабатывания контактов в таком ДД достигнута за счет разной высоты нажимных наконечников. Первой срабатывает та «половинка», у которой длиннее нажимной наконечник. Устройство нижней части корпуса этого ДД показано на рис. 6.11.

Рис. 6.11. Устройство нижней части 2-уровневого датчика давления

Функционально все ДД, которые мы рассмотрели, равноценны. Основная разница заключена лишь в настройке на определенные уровни давления, а это определяется типом и конструкцией СМА.

Довольно часто в СМА из конструктивных соображений устанавливают сразу два ДД. Это могут быть два малогабаритных одноуровневых ДД (при недостатке места в корпусе СМА) или два двухуровневых ДД. Подобное сочетание применяется для расширения функций ДД: одна из секций максимального уровня будет включать сливной насос в аварийных ситуациях.

Основные неисправности пневматических систем контроля уровня и, как следствие, неработоспособность СМА возникают из-за нарушения герметичности нижней части корпуса, в которой находится диафрагма. Нарушение герметичности соединений: бак — компрессионная камера — шланг давления — ДД.

Верхняя часть корпуса ДД герметичностью не обладает, поскольку имеет маленькие отверстия для выхода воздуха, иначе резиновая мембрана не сможет переключать контакты из-за упругости воздуха в верхней части корпуса. Есть еще варианты конструкций пневматических ДД, которые применяются в СМА с микроконтроллерным управлением. По всей видимости, это так называемые переходные модели. В них еще сохранена резиновая диафрагма. Разница — в конструкции верхней части корпуса. Например, есть вариант, где к контактным выводам на верхней части корпуса припаяна печатная плата с цепочкой резисторов, включенных последовательно. На плату с резисторами подается отдельное напряжение питания 5 В. При переключениях контактных пар ДД поочередно коммутируются резисторы и на контактном выходном разъеме платы формируются опорные напряжения, соответствующие каждому из уровней. Далее эти сигналы проходят на вход микроконтроллера, где сравниваются с запрограммированными значениями напряжений для каждого уровня. В другой конструкции ДД, например, как на рис. 6.12, какие-либо переключающие контакты вообще отсутствуют, т. к. в них нет необходимости.

Рис. 6.12. Датчики давления с колебательным контуром

Вместо них применен колебательный контур, показанный на рис. 6.13. Контур подключен к специальной схеме генератора колебаний. Это одна из первых конструкций подобных ДД.

Рис. 6.13. Схема индуктивного датчика с колебательным контуром и генератором колебаний

Элементы колебательного контура; катушка, ферритовый сердечник и два конденсатора находятся в верхней части корпуса. В более современных ДД и колебательный контур, и схема генератора интегрированы в верхней части ДД. Объединяет эти конструкции принцип действия: при увеличении уровня воды в баке резиновая мембрана перемещает ферритовый сердечник (см. рис. 6.14) колебательного контура, и в результате этого изменяется частота колебаний на выходе генератора.

Рис. 6.14. Принцип работы индуктивного датчика давления

Значение частоты, соответствующее каждому из уровней, также сравнивается с запрограммированными значениями в памяти микроконтроллера. В верхней части ДД есть регулируемый винт, позволяющий изменять высоту положения сердечника.

Все регулировки сделаны на заводе-изготовителе. Два последних варианта ДД имеют существенное отличие. Это отличие в разнице выходных сигналов на выводах ДД. Например, в первом варианте на рис. 6.15,а приведена схема генератора.

Рис. 6.15. а) Одна из типовых современных схем генератора колебаний датчика давления,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×