вправе усомниться в том, что атомы существуют на самом деле! Правда, значение греческого слова «атомос» уже не соответствует современным представлениям об атоме как о неделимой частице: атомы состоят из более мелких «деталей» — протонов, нейтронов и электронов, а есть и еще более «элементарные» — кварки. Но этот «конструктор» уже не для химиков — им пользуются физики для «конструирования» казавшихся ранее элементарными частиц — протонов и нейтронов.

Рис. 1.6. Па этой не очень четкой фотографии, сделанной с помощью электронного микроскопа, видны выстроившиеся в ряды атомы элемента ниобия

В силу того, что никакие химические реакции не способны изменить ядро атома, невозможно химическими методами превратить один атом в другой. Вот почему не переходят друг в друга и химические элементы. Это как в конструкторе: если в нем очень много разных деталей, то из них можно собрать множество сложных конструкций. Но невозможно одну деталь превратить в другую, например кубик — в уголок. Поэтому сейчас только чудаку или совершенно дремучему человеку может прийти в голову идея превратить одно простое вещество в другое (например, свинец в золото, как это пытались в течение сотен лет сделать алхимики). И как мастер может распилить детали и из их частей склеить, спаять или сварить детали другой формы, так и физики сейчас умеют из одних атомов получать другие, правда, не любые. Золото из свинца они вряд ли получат, а вот из ртути, пожалуй, смогут (у ртути заряд ядра атома всего лишь на единицу больше, чем у золота). Однако осуществлять такие чудесные превращения они могут, как правило, лишь с небольшим числом атомов. Так что один грамм «искусственного» золота будет стоить, вероятно, больше, чем тысячи тонн «обычного» золота. Именно по этой причине теперь ни у кого не возникает желания обогатиться, превратив неблагородный металл в золото…

Большинство окружающих нас веществ являются сложными веществами, построенными из нескольких элементов. Например, вола состоит из атомов водорода и кислорода, поваренная соль — из атомов натрия и хлора, сахар — из атомов углерода, водорода и кислорода (поэтому сахар относят к углеводам), витамин В12 — из атомов углерода, водорода, кислорода, азота, фосфора и кобальта и т. д.

На практике понятие простого вещества, как и многие другие химические понятия, носит условный характер. (Все же химия — не математика!) Ведь «железный» гвоздь сделан вовсе не из чистого железа, а из низкоуглеродистой стали, содержащей небольшое количество углерода. Чистое железо очень мягкое и почти никогда не используется. То же можно сказать про свинцовую оболочку кабеля, серебряную вилку, алюминиевую ложку — все они представляют собой сплавы разных металлов, хотя свинца, серебра и алюминия в них больше всего. Например, «серебряные» полтинники, которые были отчеканены в нашей стране в 1921–1927 годах в количестве почти 150 миллионов, и потому их сохранилось довольно много, содержат только 90 % серебра, остальное — медь.

Вообще число относительно чистых простых веществ, с которыми человек сталкивается в повседневной жизни, невелико. Из металлов это, прежде всего, медь и алюминий, из которых сделаны электрические провода (примеси снижают электропроводность). Раскаленный волосок электрической лампочки — практически чистый, очень тугоплавкий металл вольфрам, а тоненькие подвески с крючками на концах, которые одним концом впаяны в стекло, а другим поддерживают вольфрамовую нить, сделаны из тугоплавкого металла молибдена. Тонкий защитный слой на консервной банке — практически чистое олово, а красивые крупные кристаллы на стенках и дне нового «железного» ведра — это цинк. В некоторых магазинах можно увидеть очень дорогие юбилейные монеты из платины, палладия, золота, сделанные из металлов высокой чистоты (степень чистоты на них, как правило, указана и может достигать 99,9 %). В медицинских градусниках используют единственный жидкий при 20 °C металл — ртуть. Многие металлические изделия покрывают хромом или никелем, которые придают предметам привлекательный блеск. Вот, пожалуй, и все чистые металлы, встречающиеся в быту. Остальные — это сплавы, которых огромное множество: латунь, бронза, томпак, баббит, мельхиор, нейзильбер, дуралюминий, силумин, инвар, платинит, нихром, константан — всех не перечислить…

Из неметаллов в быту в чистом виде встречается сера (ее используют для борьбы с вредителями растений), углерод (например, в виде сажи), гелий (им наполнены «летучие» воздушные шарики, а раньше для этого использовали более дешевый, но горючий водород), криптон (в электрических «криптоновых» лампочках, отличающихся при той же мощности меньшим размером и грибовидной формой). Конечно, если покопаться в микросхеме компьютера или телевизора, возможно, найдутся маленькие кристаллы чистого кремния и германия.

Из чего сделаны атомы

Итак, к концу XVIII — началу XIX века благодаря работам Михаила Васильевича Ломоносова (1711– 1765), А. Л. Лавуазье, Уильяма Праута (1785–1850), Амедео Авогадро (1776–1856) и других ученых гипотеза о существовании атомов и молекул начала приобретать черты теории, которая могла бы принести огромную практическую пользу. Однако многие ученые, в том числе и выдающиеся, не поняли этого. Вот несколько примеров. Крупнейший французский химик XIX века Марселен Бертло (1827–1907) писал: «Понятие молекулы, с точки зрения наших знаний, неопределенно, в то время как другое понятие — атом — чисто гипотетическое». Еще определеннее высказался известный французский химик Анри Этьен Сент-Клер Девилль (1818–1881): «Я не допускаю ни закона Авогадро, ни атома, ни молекулы, ибо я отказываюсь верить в то, что не могу ни видеть, ни наблюдать». А немецкий химик Вильгельм Оствальд (1853–1932), лауреат Нобелевской премии, один из основателей физической химии, еще в начале XX столетия решительно отрицал существование атомов! В своем трехтомном учебнике химии он ни разу даже не упомянул о них.

Теперь о том, что мир построен из атомов, знают даже школьники младших классов. Ученые получили довольно много сведений о строении различных атомов и молекул, об их форме и размерах. Еще более важными оказались знания, относящиеся к явлениям, которые происходят при «изменении форм» различных веществ, или, выражаясь современным языком, при изменении взаимного расположения атомов, когда они объединяются в более крупные частицы — молекулы, состоящие из одинаковых или разных атомов. С точки зрения современной науки взаимное расположение атомов в молекулах, а также взаимное расположение молекул определяют свойства веществ, о чем догадывались еще древние. А процесс перестройки взаимного расположения атомов составляет сущность химической реакции.

Нелегкий путь становления теории строения вещества на основе атомистических представлений можно проследить на примере изменений, которые претерпела периодическая таблица элементов Д. И. Менделеева.

Периодическая таблица начинается с самого легкого элемента — водорода. Некоторые ученые полагали, что все химические элементы произошли от самых простых атомов. В 1815 голу английский химик Уильям Праут выдвинул гипотезу, согласно которой атомы всех химических элементов «построены» из атомов водорода. Если массу атома водорода принять за единицу, то атомные массы всех остальных элементов должны в соответствии с гипотезой Праута в целое число раз превышать массу атома водорода и потому выражаться целыми числами. Эти числа (их называют относительной атомной массой) действительно были целыми для ряда известных на то время элементов.

Во второй половине XIX века отдельные ученые попытались обосновать гипотезу Праута, но у них ничего не получилось, о чем достаточно определенно написал уже знаменитый в то время Д. И. Менделеев: «Все подобные мысли… должно относить к области, лишенной какой-либо опытной опоры». То есть на тот момент ученые не располагали надежными методами проверки истинности гипотезы Праута. Кстати, в первой таблице химических элементов, составленной Д. И. Менделеевым в 1869 году, было немногим более 60 элементов, причем атомные массы 50 из них, или у подавляющего большинства, приводились в целых числах. Но массы-то остальных 13 элементов были дробными! В чем тут дело? Сторонники гипотезы Праута считали, что просто атомные массы этих элементов были определены недостаточно точно. Ведь определить экспериментально относительную атомную массу элемента с высокой точностью в XIX веке было делом трудным; некоторые химики годами работами над этой задачей. Между прочим, сам Менделеев не был уверен в точности всех атомных масс, значениями которых он располагал. В своей первой таблице он в этих случаях ставил рядом с символом элемента знак вопроса. Так, на месте золота в этой таблице стоит Au = 197?

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×