подвеской без демпфирующих элементов (кривая I) и с демпфирующими элементами (кривая 2). Не вдаваясь в глубины теории подрессоривания, только отмечу: из приведенного графика видно, что в резонансной части колебаний корпуса и на низких частотах колебаний (левая часть кривой 2) применение амортизаторов за счет гашения колебаний весьма эффективно. Чем выше демпфирующие свойства амортизаторов, тем ниже будет проходить на графике левая часть кривой 2 и тем меньше амплитуда угловых колебаний. С другой стороны, амортизатор увеличивает жесткость подвески и на высоких частотах амплитуды колебаний увеличиваются с ростом мощности амортизатора (правая часть кривой 2). Отсюда можно сделать вывод, что мощный амортизатор эффективен при движении по большим неровностям (эффективно гасит низкочастотные колебания) и вреден при движении по мелким неровностям (увеличивает тряску).

Таким образом, наиболее целесообразной является мягкая подвеска с большими динамическими и полными ходами катков и эффективными амортизаторами (с низким демпфированием на мелких неровностях и высоким на крупных). Чтобы низкая жесткость рессор не сказывалась на уменьшении удельной потенциальной энергии подвески, число узлов подвески желательно иметь как можно больше. Для современных основных боевых танков разумным пределом является 6–7 узлов подвески (опорных катков) на один борт. Перспективным является путь применения пневматических и гидропневматических подвесок с системами автоматического регулирования (САР) характеристик подвески (клиренса, жесткости упругих элементов, демпфирования амортизаторов) в зависимости от профиля пути. Вариант САР подрессоривания с лазерным датчиком профиля местности был разработан в США для танка МВТ-70, динамика ходового макета с этой системой улучшена на 30 %.

Здесь хочется сделать некоторое отступление. Анализируя АЧХ колебаний корпуса, можно заметить, что при движении по поверхности с профилем, приводящим танк к колебаниям с частотами, близкими к собственной, возникает резонанс и танк начинает сильно раскачиваться. Для уменьшения раскачиваний корпуса водитель обычно снижает скорость, однако, как следует из АЧХ, увеличение скорости значительно эффективнее скажется на уменьшении амплитуды колебаний, что опытные механики-водители и практикуют: как только танк начал сильно раскачиваться, прижал сильнее педаль подачи топлива, танк увеличил скорость — и колебания резко уменьшились. Т. е. можно сказать, что в данной ситуации механик- водитель сам по себе представляет систему автоматического регулирования колебаний корпуса.

Амплитудно-частотные характеристики подвески танка.

Продолжение следует

Танки могут «летать» не только благодаря мощи своего двигателя, но и возможностям подвески, принимающей не себя удары огромной силы.

Графика С. Буркатовского.

Музей musee de i’abri de hatten (Франция)

Фото М. Петрова

Статья, посвященная этому музею, будет опубликована в следующем номере журнала..

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×