исследований РАН, пишет об этом следующим образом: «Внесолнечные планеты предлагают теоретикам столько вопросов, что впору всю теорию образования планет писать заново. А наивный вопрос: почему миграции нет в нашей Солнечной системе? – им лучше не задавать». Тем более не стоит спрашивать специалистов о других физических параметрах экзопланет. Принимая за точку отсчета Солнечную систему, мы вправе предположить, что средняя плотность газовых гигантов возле чужих солнц (горячие они или холодные – принципиального значения не имеет) должна укладываться в знакомые величины, мало отличающиеся от плотности воды. Однако не тут-то было! Средняя плотность массивных экзопланет «плавает» в очень широких пределах – от половины плотности Юпитера до нескольких плотностей Сатурна. Например, одна из таких планет, ощутимо уступающая Юпитеру в диаметре, основательно превосходит его по массе, из чего следует предположить, что она обладает увесистым ядром из тяжелых элементов, на которое приходится до 0,7 массы новой экзопланеты. Газовые гиганты в Солнечной системе не могут похвастаться столь плотным ядром, так что в стандартной теории происхождения планет этот факт не находит вразумительного объяснения.

Феномен «горячих юпитеров» астрофизики с грехом пополам объяснили, но остаются еще «холодные юпитеры», сплошь и рядом описывающие вокруг материнской звезды настолько растянутые эллипсы, которые больше пристали долгопериодическим кометам, время от времени улетающим в никуда. Правда, компьютерное моделирование вроде бы помогло пролить свет на эволюцию планетной системы ипсилон Андромеды («горячий юпитер» на низкой орбите и две далекие планеты с отчетливым эксцентриситетом орбит). С другой стороны, модели моделям рознь. Например, сотрудники Вашингтонского университета в Сиэтле почему-то пришли к выводу, что большинство экзопланет, сходных по размерам с Землей (на всякий случай для справки: ни одна такая планета пока что не наблюдалась, ибо их обнаружение лежит за пределами современных астрофизических методов), должны быть водными мирами. Они тасовали различные сценарии планетогенеза, и каждый раз на дисплее возникали четыре землеподобные планеты, самая маленькая из которых была впятеро меньше Земли, а самая большая – в четыре раза больше. При компьютерном моделировании на этих виртуальных землях накапливалось невероятное количество воды – в 300 раз больше, чем на реальной Земле, так что вся их поверхность должна быть покрыта впечатляющим океаном многокилометровой глубины.

Кстати, а что можно сказать о поисках планет земного типа? Увы, но практически ничего, так как чувствительность метода лучевых скоростей позволяет надежно обнаруживать только планеты-гиганты (планеты возле пульсаров, о которых речь пойдет ниже, – редкое и счастливое исключение). Самая маленькая из недавно открытых экзопланет вращается вокруг красного карлика – звезды спектрального класса М с температурой поверхности 2–3 тысячи градусов Кельвина (у нашего Солнца – 6 тысяч). Предположительно она является твердой, то есть состоит из скальных пород, как Земля, а ее масса оценивается примерно в 7,5 земной массы (заметно меньше, чем у Нептуна или Урана). Все бы ничего, однако, к сожалению, это опять планета на низкой орбите (правда, по причине сравнительно небольших размеров назвать ее «юпитером» как-то язык не поворачивается). Вокруг своего тусклого солнца она обращается за двое суток (1,94 дня) и находится от него на расстоянии три миллиона километров – в 50 раз ближе, чем Земля от Солнца. И хотя красный карлик – не чета нашему жаркому светилу, он все же разогревает поверхность стремительно летящей планеты до 200–400 градусов по Цельсию. Жизнь земного типа там едва ли возможна.

Однако отчаиваться все же не стоит, поскольку статистика внесолнечных планет далеко не полна. Скажем, немалый интерес представляет система звезды HD37124 в созвездии Тельца, где обнаружены три планеты, каждая из которых вдвое легче Юпитера, а радиусы их орбит равны 0,5, 1,7 и 3,2 а. е. А поскольку особой тесноты в системе звезды из созвездия Тельца не наблюдается, там вполне можно предположить наличие планет земного типа. То же самое относится и к звезде 47 Большой Медведицы, у которой обнаружены массивные планеты, напоминающие Сатурн и Юпитер, с весьма сходными параметрами орбит. Следовательно, во внутренней области этой системы не исключено существование планет земного типа.

Однако факт остается фактом: строение орбит подавляющего большинства экзопланет даже отдаленно не напоминает Солнечную систему. Вплотную притиснутые к своим солнцам раскаленные газовые шары или убегающие по невообразимо растянутым эллипсам ледяные гиганты не имеют ничего общего с планетами Солнечной системы. Если предположить, что во внутренних областях некоторых экзопланетных систем остается место для землеподобных планет, трудно представить, каким образом они смогут уцелеть, ибо миграция гигантов к звезде неминуемо приведет к катастрофическому пересечению орбит.

Даже анатомия чужих газовых гигантов принципиально иная. Многие из них обладают массивным ядром из тяжелых элементов, на которое приходится до 70 % всей массы планеты. Заметно уступая в размерах нашему Юпитеру или Сатурну, такие нетипичные экзопланеты ощутимо превосходят их по массе. В Солнечной системе ничего подобного не встречается. Все эти загадки, вместе взятые, приводят к весьма печальному выводу об уникальности нашей планетной системы. Планеты земной группы обращаются по устойчивым орбитам и в принципе способны быть колыбелью жизни. Планеты-гиганты неспешно кружатся в отдалении и никому не мешают; более того, существует точка зрения, согласно которой они выполняют важную защитную функцию, прикрывая внутренние планеты от неожиданных атак опасных небесных тел. Дело доходит до того, что некоторые астрофизики поговаривают о своеобразном варианте антропного принципа, в соответствии с которым возникновение жизни на Земле теснейшим образом связано с Юпитером.

Астрономия как наука развивалась под знаком нарастающей децентрализации. Сначала мы узнали, что Земля не является центром мироздания, а представляет собой весьма скромное небесное тело, неутомимо снующее вокруг Солнца. Затем выяснилось, что наше великолепное светило, обожествляемое, превозносимое до небес и дарующее жизнь всякой твари, – заурядный желтый карлик спектрального класса G, каковых в составе Млечного Пути насчитывается тьма-тьмущая. Да и расположено оно отнюдь не в центре Галактики, как опрометчиво полагали некоторые астрономы XVIII столетия, а обосновалось на ее далеких задворках, где звезд раз-два и обчелся, между двумя пыльными спиральными рукавами. А теперь нам говорят, что диск Млечного Пути, эта скрученная в тугой узел чудовищная клякса с поперечником в 100 тысяч световых лет, есть не что иное, как одна из сотен миллиардов галактик, рассыпанных по необозримой Вселенной.

Мысль об уникальности Солнечной системы продолжает сидеть, как заноза, изрядно отравляя астрономам жизнь. Ксанфомалити пишет:

Все крупные планеты Солнечной системы имеют почти копланарные (расположенные в одной плоскости) стабильные орбиты с низким эксцентриситетом, исключающим их катастрофические сближения. Солнечная система – это система с низкой энтропией (высокой устойчивостью). Но именно высокоэнтропийные системы экзопланет, в которых выживают лишь самые массивные тела, могут оказаться нормой. Солнечная система могла оказаться совсем другой, чем та, в которой мы живем. Или, может быть, мы живем в ней именно потому, что она не похожа на другие?

В заключение остается сказать, что первая экзопланета была обнаружена не в 1994 году, а на несколько лет раньше – в 1990-м, когда американский астроном польского происхождения Алекс Вольцшан (Волчан в другой транслитерации) направил свой радиотелескоп на слабый пульсар PSR 1257+12, находящийся на расстоянии 1300 световых лет от Земли. По своей физической природе пульсары являются нейтронными звездами, которые испускают мощные, строго периодические импульсы электромагнитного излучения. Периодичность импульсов у каждого пульсара строго индивидуальна и обычно лежит в пределах от 640 импульсов в секунду до одного импульса за пять секунд. Стремительно вращающаяся нейтронная звезда представляет собой, по сути дела, гигантский магнит, а вдоль прямой, соединяющей полюса этого магнита, который крутится как угорелый, вылетают так называемые джеты – мощные струи раскаленной плазмы и фотонов. Переменность блеска объясняется просто, так как магнитный полюс не обязан лежать на оси вращения (магнитные полюса Земли тоже не совпадают с точкой географических полюсов). Вылетающая электромагнитная струя описывает конус вокруг оси вращения, а мы видим пульсар только в те моменты, когда он «смотрит» прямо на Землю. Через мгновение он отворачивается и уходит в сторону, с тем чтобы опять вернуться спустя некоторый строго фиксированный промежуток времени.

Поскольку период пульсаров исключительно стабилен (вплоть до 10-14 секунд), лучевую скорость нейтронной звезды можно измерить с точностью до 1 см/с, что совершенно недоступно для

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×