abeyance while Lowell’s heirs squabbled over his estate. However, in 1929, partly as a way of deflecting attention away from the Mars canal saga (which by now had become a serious embarrassment), the Lowell Observatory directors decided to resume the search and to that end hired a young man from Kansas named Clyde Tombaugh.

Tombaugh had no formal training as an astronomer, but he was diligent and he was astute, and after a year’s patient searching he somehow spotted Pluto, a faint point of light in a glittery firmament. It was a miraculous find, and what made it all the more striking was that the observations on which Lowell had predicted the existence of a planet beyond Neptune proved to be comprehensively erroneous. Tombaugh could see at once that the new planet was nothing like the massive gasball Lowell had postulated, but any reservations he or anyone else had about the character of the new planet were soon swept aside in the delirium that attended almost any big news story in that easily excited age. This was the first American-discovered planet, and no one was going to be distracted by the thought that it was really just a distant icy dot. It was named Pluto at least partly because the first two letters made a monogram from Lowell’s initials. Lowell was posthumously hailed everywhere as a genius of the first order, and Tombaugh was largely forgotten, except among planetary astronomers, who tend to revere him.

A few astronomers continue to think there may be a Planet X out there-a real whopper, perhaps as much as ten times the size of Jupiter, but so far out as to be invisible to us. (It would receive so little sunlight that it would have almost none to reflect.) The idea is that it wouldn’t be a conventional planet like Jupiter or Saturn-it’s much too far away for that; we’re talking perhaps 4.5 trillion miles-but more like a sun that never quite made it. Most star systems in the cosmos are binary (double-starred), which makes our solitary sun a slight oddity.

As for Pluto itself, nobody is quite sure how big it is, or what it is made of, what kind of atmosphere it has, or even what it really is. A lot of astronomers believe it isn’t a planet at all, but merely the largest object so far found in a zone of galactic debris known as the Kuiper belt. The Kuiper belt was actually theorized by an astronomer named F. C. Leonard in 1930, but the name honors Gerard Kuiper, a Dutch native working in America, who expanded the idea. The Kuiper belt is the source of what are known as short-period comets-those that come past pretty regularly-of which the most famous is Halley’s comet. The more reclusive long-period comets (among them the recent visitors Hale-Bopp and Hyakutake) come from the much more distant Oort cloud, about which more presently.

It is certainly true that Pluto doesn’t act much like the other planets. Not only is it runty and obscure, but it is so variable in its motions that no one can tell you exactly where Pluto will be a century hence. Whereas the other planets orbit on more or less the same plane, Pluto’s orbital path is tipped (as it were) out of alignment at an angle of seventeen degrees, like the brim of a hat tilted rakishly on someone’s head. Its orbit is so irregular that for substantial periods on each of its lonely circuits around the Sun it is closer to us than Neptune is. For most of the 1980s and 1990s, Neptune was in fact the solar system’s most far-flung planet. Only on February 11, 1999, did Pluto return to the outside lane, there to remain for the next 228 years.

So if Pluto really is a planet, it is certainly an odd one. It is very tiny: just one-quarter of 1 percent as massive as Earth. If you set it down on top of the United States, it would cover not quite half the lower forty-eight states. This alone makes it extremely anomalous; it means that our planetary system consists of four rocky inner planets, four gassy outer giants, and a tiny, solitary iceball. Moreover, there is every reason to suppose that we may soon begin to find other even larger icy spheres in the same portion of space. Then we will have problems. After Christy spotted Pluto’s moon, astronomers began to regard that section of the cosmos more attentively and as of early December 2002 had found over six hundred additional Trans-Neptunian Objects, or Plutinos as they are alternatively called. One, dubbed Varuna, is nearly as big as Pluto’s moon. Astronomers now think there may be billions of these objects. The difficulty is that many of them are awfully dark. Typically they have an albedo, or reflectiveness, of just 4 percent, about the same as a lump of charcoal-and of course these lumps of charcoal are about four billion miles away.

And how far is that exactly? It’s almost beyond imagining. Space, you see, is just enormous-just enormous. Let’s imagine, for purposes of edification and entertainment, that we are about to go on a journey by rocketship. We won’t go terribly far-just to the edge of our own solar system-but we need to get a fix on how big a place space is and what a small part of it we occupy.

Now the bad news, I’m afraid, is that we won’t be home for supper. Even at the speed of light, it would take seven hours to get to Pluto. But of course we can’t travel at anything like that speed. We’ll have to go at the speed of a spaceship, and these are rather more lumbering. The best speeds yet achieved by any human object are those of the Voyager 1 and 2 spacecraft, which are now flying away from us at about thirty-five thousand miles an hour.

The reason the Voyager craft were launched when they were (in August and September 1977) was that Jupiter, Saturn, Uranus, and Neptune were aligned in a way that happens only once every 175 years. This enabled the two Voyagers to use a “gravity assist” technique in which the craft were successively flung from one gassy giant to the next in a kind of cosmic version of “crack the whip.” Even so, it took them nine years to reach Uranus and a dozen to cross the orbit of Pluto. The good news is that if we wait until January 2006 (which is when NASA’s New Horizons spacecraft is tentatively scheduled to depart for Pluto) we can take advantage of favorable Jovian positioning, plus some advances in technology, and get there in only a decade or so-though getting home again will take rather longer, I’m afraid. At all events, it’s going to be a long trip.

Now the first thing you are likely to realize is that space is extremely well named and rather dismayingly uneventful. Our solar system may be the liveliest thing for trillions of miles, but all the visible stuff in it-the Sun, the planets and their moons, the billion or so tumbling rocks of the asteroid belt, comets, and other miscellaneous drifting detritus-fills less than a trillionth of the available space. You also quickly realize that none of the maps you have ever seen of the solar system were remotely drawn to scale. Most schoolroom charts show the planets coming one after the other at neighborly intervals-the outer giants actually cast shadows over each other in many illustrations-but this is a necessary deceit to get them all on the same piece of paper. Neptune in reality isn’t just a little bit beyond Jupiter, it’s way beyond Jupiter-five times farther from Jupiter than Jupiter is from us, so far out that it receives only 3 percent as much sunlight as Jupiter.

Such are the distances, in fact, that it isn’t possible, in any practical terms, to draw the solar system to scale. Even if you added lots of fold-out pages to your textbooks or used a really long sheet of poster paper, you wouldn’t come close. On a diagram of the solar system to scale, with Earth reduced to about the diameter of a pea, Jupiter would be over a thousand feet away and Pluto would be a mile and a half distant (and about the size of a bacterium, so you wouldn’t be able to see it anyway). On the same scale, Proxima Centauri, our nearest star, would be almost ten thousand miles away. Even if you shrank down everything so that Jupiter was as small as the period at the end of this sentence, and Pluto was no bigger than a molecule, Pluto would still be over thirty-five feet away.

So the solar system is really quite enormous. By the time we reach Pluto, we have come so far that the Sun-our dear, warm, skin-tanning, life-giving Sun-has shrunk to the size of a pinhead. It is little more than a bright star. In such a lonely void you can begin to understand how even the most significant objects-Pluto’s moon, for example-have escaped attention. In this respect, Pluto has hardly been alone. Until the Voyager expeditions, Neptune was thought to have two moons; Voyager found six more. When I was a boy, the solar system was thought to contain thirty moons. The total now is “at least ninety,” about a third of which have been found in just the last ten years.

The point to remember, of course, is that when considering the universe at large we don’t actually know what is in our own solar system.

Now the other thing you will notice as we speed past Pluto is that we are speeding past Pluto. If you check your itinerary, you will see that this is a trip to the edge of our solar system, and I’m afraid we’re not there yet. Pluto may be the last object marked on schoolroom charts, but the system doesn’t end there. In fact, it isn’t even close to ending there. We won’t get to the solar system’s edge until we have passed through the Oort cloud, a vast celestial realm of drifting comets, and we won’t reach the Oort cloud for another-I’m so sorry about this-ten thousand years. Far from marking the outer edge of the solar system, as those schoolroom maps so cavalierly imply, Pluto is barely one-fifty-thousandth of the way.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×