фигурируют в теориях эволюции, будь то дарвинизм или история человечества (мы увидим, что события также связаны с термодинамической стрелой времени в области сильно неравновесных процессов). Можно ли пойти дальше, чем Лукреций и Эйнштейн, «добавившие» события к детерминистическим законам? Можно ли «видоизменить» само понятие физического закона так, чтобы включить в наше описание природы необратимость? Принятие такой программы повлекло за собой основательный пересмотр законов природы, который стал возможен благодаря замечательным успехам, связанным с идеями неустойчивости и хаоса.

Начнем с рассмотрения классической динамики. Представляется, что все системы, описываемые законами Ньютона, в чем-то одинаковы. Конечно, каждому известно, что рассчитать траекторию системы трех тел, например Солнца, Земли и Юпитера, труднее, чем траекторию падающего камня, но эти трудности считали непринципиальными, связанными только с большим объемом вычислений. Однако в последние десятилетия выяснилось, что подобное мнение неверно – не все динамические системы одинаковы. Оказалось, что такие системы подразделяются на устойчивые и неустойчивые. Так, маятник устойчив: слабые возмущения мало сказываются на его движении; но для большинства динамических систем малые начальные отклонения постепенно возрастают. Крайний случай неустойчивых систем – так называемые хаотические системы, для которых описание в терминах траекторий становится недостаточным, поскольку первоначально сколь угодно близкие траектории со временем экспоненциально расходятся.

Итак, хаос появляется в макроскопических необратимых процессах, где он, так сказать, «негативен» – делает невозможными определенные предсказания вследствие быстрого расхождения соседних траекторий. Этот эффект равнозначен чувствительности решения уравнения к начальным условиям, через которую обычно определяют хаос. Однако важный новый момент состоит в том, что хаос обретает теперь и «позитивные» аспекты. Так как отдельные траектории становятся чрезмерной идеализацией, Пригожин вынужден обратиться к вероятностному описанию в терминах ансамбля возможных траекторий. Такое описание само по себе не ново: оно служило отправным пунктом развитого Гиббсом и Эйнштейном подхода к статистической физике.

Здесь нужно подчеркнуть одно очень существенное обстоятельство: из вероятностного описания, вводимого для хаотических систем, вытекает необратимость, потому что оно применимо уже не к отдельной траектории, а к пучку, расходящемуся «вееру» возможностей. Это утверждение есть результат строгого анализа методами современной математики. Значит, в таком вероятностном представлении прошлое и будущее начинают играть различные роли. Иначе говоря, хаос вводит стрелу времени в фундаментальное динамическое описание.

Хаос позволяет разрешить парадокс времени, но он делает и нечто большее – привносит вероятность в классическую динамику, то есть в область детерминистической науки. В данном контексте вероятность выступает уже не как следствие нашего незнания, а как неизбежное выражение хаоса. В свою очередь это позволяет по-новому определить хаос. Мы сказали, что хаос приводит к необратимому вероятностному описанию, теперь же мы перевернем это утверждение: все системы, допускающие необратимое вероятностное описание, будем считать хаотическими. Таким образом, системы, о которых идет речь, допускают описание не в терминах отдельных траекторий (или отдельных волновых функций в квантовой механике), а только в понятиях пучков (или ансамблей) траекторий.

Сфера проявлений хаоса чрезвычайно расширилась и включила в себя фактически все системы, описываемые современными теориями взаимодействующих полей. Столь широкое обобщение понятий хаоса требует новой – третьей – формулировки законов физики: первая была основана на исследовании индивидуальных траекторий или волновых функций; вторая – на теории ансамблей Гиббса и Эйнштейна (с динамической точки зрения вторая формулировка не вносит новизны, поскольку, будучи примененной к отдельным траекториям или волновым функциям, сводится к первой). Теперь мы приходим к третьей формулировке, имеющей совершенно иной статус: она применима только к ансамблям и справедлива только для динамических систем. Она приводит к выводам, которые не могут быть получены ни на основе ньютоновской, ни ортодоксальной квантовой механики. Именно это новое представление, вводящее необратимость в фундамент описания природы, позволяет объединить свойства микро и макромира.

Мотивацией концепции И.Р. Пригожина служил парадокс времени, но он существует не сам по себе. С ним тесно связаны два других парадокса, которые, как мы увидим, имеют самое непосредственное отношение к отрицанию стрелы времени: квантовый парадокс и космологический парадокс.

В квантовом мире движение описывают волновыми функциями. Главное отличие волновой механики от ньютоновской состоит в том, что классические траектории, получаемые из уравнения движения, непосредственно соответствуют наблюдаемым, тогда как квантово-механические волновые функции, будучи решениями уравнения Шредингера (играющего, в принципе, ту же роль, что уравнение Ньютона), задают только амплитуду вероятности, с которыми реализуются различные возможные траектории. И чтобы получить сами вероятности каждого исхода, нужно произвести дополнительную операцию – редукцию (коллапс) волнового пакета. Эта операция связана с процедурой измерения, она лежит вне основного уравнения теории.

Отсюда вытекает двойственность квантовой механики – наличие двух разнородных элементов (волновой функции и ее редукции) приводит к концептуальным трудностям, споры вокруг которых продолжаются вот уже шестьдесят лет – с момента возникновения этой теории. Хотя ее с полным основанием называли наиболее успешной из всех существующих физических теорий, пока так и не удалось выяснить физический смысл редукции волновой функции. Многие ученые полагают, что ответственность за нее несет наблюдатель и производимые им измерения.

Между парадоксом времени и квантовым парадоксом есть тесная аналогия. Оба они отводят нам довольно странную роль: получается, что человек ответствен как за стрелу времени, так и за переход от квантовой потенциальной возможности к уже свершившемуся, то есть за все особенности, связанные с переходом от становления к событиям в нашем физическом рассмотрении.

Поскольку квантовые хаотические системы описывают не в терминах волновых функций, а сразу в терминах вероятностей, отпадает необходимость в коллапсе волновой функции. Временная эволюция хаотических систем преобразует описание через волновые функции в описание ансамбля траекторий. Посредником, связывающим нас с природными явлениями, выступает уже не акт наблюдения, а квантовый хаос.

Идеи, охватывающие общим подходом хаос, стрелу времени и квантовый парадокс, приводят нас к более «целостному» пониманию природы, которое включает в себя и становление, и события (на всех уровнях описания). Традиционные законы природы соответствовали замкнутой детерминированной Вселенной, прошлое и будущее которой, по сути, неразличимы. Это рассматривалось как триумф человеческого разума, преодолевающего ограниченность видимой изменчивости природы. Но такой взгляд был чужд другим наукам, которые предполагали стрелу времени. Теперь мы понимаем, что детерминированные, симметричные во времени законы справедливы только для устойчивых классических и квантовых систем, то есть для весьма ограниченного их класса. Место этих законов заняли ныне вероятностные представления, которые соответствуют открытой Вселенной, где в каждый последующий момент времени возникает новое, где в игру вступают неизвестные прежде факторы.

Упомянут и третий парадокс – космологический. Современная космология приписывает нашей Вселенной некий возраст: она родилась с Большим Взрывом около 15 миллиардов лет назад. Ясно, что это Событие. Но событие не входящее в привычную систему законов природы: траектории там нигде не начинаются и ни на чем не заканчиваются. Именно поэтому гипотеза Большого Взрыва с ее проблемой сингулярности (исходного состояния) породила в физике глубочайший кризис. В поисках выхода из него Стивен Хокинг и другие ученые предположили, что космологическое время есть иллюзия. Если чисто математически ввести в теорию мнимое время, то различие между пространственными координатами и временем, которое осталось в общей теории относительности, полностью стирается. Сингулярность тоже исчезает, поскольку тогда и пространство, и время уже не имеют границ, а значит, время не имеет начала – оно становится чистой «акциденцией», то есть не сущностным, а побочным свойством мира. Так формально решается проблема Большого Взрыва, а заодно снимается всякое различие между бытием и становлением. По выражению Хокинга, Вселенная «просто есть, и все!».

С точки зрения И.Р. Пригожина, события – результат неустойчивости, хаоса. Это утверждение остается в силе на всех уровнях, включая космологический. В детерминистических рамках все

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×