расчеты. Это может затруднить их чтение для мало подготовленного читателя. Однако такое усложнение текста, по нашему мнению, необходимо. В противном случае выводы, содержащиеся в этой части, представлялись бы голословными. С другой стороны, содержащийся в этих главах материал является новым и в некоторой степени оригинальным. Поэтому он может представлять интерес и для специалистов. Изложение построено таким образом, что без ущерба для понимания математические выкладки могут быть пропущены.

19. Освоение человечеством Солнечной системы

В предыдущей главе мы уже упомянули о важнейшей для нашей проблемы особенности разумной жизни на Земле – ее экспансии в окружающее космическое пространство. Нам очень повезло – этот процесс начался буквально на наших глазах около 30 лет назад, когда был запущен первый советский искусственный спутник Земли. Сейчас спустя 30 лет приходится только поражаться грандиозности достигнутых успехов. Возникла космическая индустрия, охватывающая огромные комплексы специализированных предприятий. Уже сейчас ближний космос исправно служит человечеству, помогая ему в его практической деятельности. Упомянем хотя бы о ретрансляции телевизионных передач через специализированные спутники связи. Система ретрансляции телевидения через спутники типа «Молния» позволяет смотреть московские телепередачи в самых отдаленных уголках нашей страны. Правда, достойно сожаления, что художественное качество этих передач не всегда соответствует высокому уровню космической техники… Но это уже не имеет прямого отношения к экспансии человечества в космос. Другим аспектом использования ближнего космического пространства для практических нужд народного хозяйства является система непрерывно патрулирующих метеорологических спутников. Метеорологическая служба сейчас действительно стала глобальной. Открывается, например, возможность детально прогнозировать развитие циклонов, тайфунов и других грандиозных пертурбаций земной атмосферы, еще так недавно считавшимися стихийными, не подвластными людям. Без преувеличения можно сказать, что наконец-то метеорология поставлена на прочную экспериментальную основу.

Весьма многообещающим является применение космической техники для детального прогнозирования урожая на огромных площадях, определения зараженности вредителями труднодоступных участков тайги, рыболовства и других не менее конкретных и актуальных проблем народного хозяйства. Итак, ближний космос уже сейчас поставлен на службу человеческой практики.

Но экспансия человечества в космосе этим не ограничивается. После того как первая советская беспилотная автоматическая станция совершила мягкую посадку на поверхности Луны и передала незабываемое изображение кусочка лунной поверхности, усеянного камнями (рис. 80), наш вечный спутник стал объектом настоящей атаки со стороны исследователей. Важным шагом этой волнующей эпопеи была высадка американских астронавтов Армстронга и Олдрина на поверхности Луны в районе моря Спокойствия 20 июля 1969 г., а затем и других экипажей «Аполлонов» (рис. 81 и 82). Известная фраза Армстронга «Это маленький шаг для одного человека, но гигантский шаг для всего человечества» хорошо выражает сущность неодолимого процесса экспансии разума в космическое пространство. Сама по себе высадка астронавтов на Луне, их многочасовая работа там по установке научной (в частности, сейсмической) аппаратуры, сбор образцов пород, старт с Луны, стыковка на окололунной орбите с орбитальным отсеком, который все время патрулировал, и наконец, благополучное возвращение на Землю и приводнение в заданном месте – это ли не чудо современной техники, это ли не демонстрация тех возможностей, которые заложены в человеке!

Вряд ли скоро сгладится в памяти людей эпопея «Аполлона-13», потерпевшего аварию и, благодаря великолепному мастерству астронавтов, благополучно вернувшегося на Землю буквально «на одном крыле». Этот эпизод наглядно показал, что освоение космоса – не туристская прогулка, а предприятие, полное опасности и риска. Ибо трудно исключить возможность того, что какая-нибудь деталь системы, одна из десятков тысяч, не сработает. Так же, как были жертвы (и немалые!) в эпоху Великих географических открытий, так же они будут и при освоении космоса – дело это необычно трудное и новое. Однако задача состоит в том, чтобы эти жертвы были сведены к минимуму.

В нашей стране освоение Луны шло по линии спуска на ее поверхность автоматических беспилотных станций. Великолепным достижением является длительная работа на поверхности нашего естественного спутника подвижного аппарата «Луноход-1» (рис. 83). Этот космический вездеход проработал на Луне 10½ «лунных суток», перенес несколько томительно-длинных лунных ночей, с их непомерным холодом, когда температура падала до –150°С. «Луноход» прошел по каменистой, сложного профиля поверхности Луны свыше 10 километров. Еще более далекое путешествие совершил по лунной поверхности аппарат «Луноход-2», прошедший за 5 лунных дней расстояние в 37 км. Советские автоматические капсулы осуществляли бурение лунного грунта и доставили на Землю образцы лунных пород.

Рис. 83. «Луноход-1»

Не за горами то время, когда на Луне будет сооружена постоянно действующая автоматическая обсерватория. Она может время от времени посещаться космонавтами-учеными, которые будут забирать накопившиеся научные материалы (например, фотопленки). Разумеется, часть информации автоматическая обсерватория будет посылать на Землю по телеметрическим каналам. Уже давно астрономы поняли, что Луна является превосходной платформой для астрономических наблюдений. Недаром знаменитый американский астроном Саймон Ньюкомб еще в прошлом веке шутливо заметил, что после смерти души настоящих астрономов должны попадать на Луну, где условия для наблюдений должны быть идеальны…

Правда, в настоящее время далеко не ясно, какой тип космической обсерватории лучше – установленный на Луне или на большом искусственном спутнике с весьма вытянутой орбитой, большая полуось которой близка к радиусу лунной орбиты. Несомненно, есть такие астрономические наблюдения, для которых последний вариант является предпочтительным. Например, радиоинтерферометрия со сверхдлинными «космическими» базами. Известно, что применение таких интерферометров, антенны которых разделены на межконтинентальные расстояния порядка многих тысяч километров, позволило достигнуть в радиоастрономии разрешающей способности (определяемой формулой φ = λ/d где λ – длина волны, d – расстояние между антеннами) около 10–3 секунды дуги, что в сотни раз лучше, чем в оптической астрономии. Именно этим методом удалось получить основную информацию о «космических мазерах» на волнах 18 и 1,35 см, о чем речь шла в гл. 4.

Однако дальнейшему повышению разрешающей способности таких радиоинтерферометров мешают… ограниченные размеры земного шара! И тогда естественно возникает проект: надо удалить две антенны такого интерферометра на космическое расстояние. Одна большая антенна будет находиться на Земле, в то

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×