Мы можем разложить его на множители несколькими способами, например:

2 × 42; 3 × 28; 12 × 7; 2 × 6 × 7; 21 × 4.

В пределе разложить на множители означает найти произведение простых чисел, например: 84 = 2 × 2 × 3 × 7. Нельзя разбить эти множители на части, потому что каждый из них представляет собой простое число. Разумеется, мы можем добавить какое-то количество единиц, например:

84 = 1 × 1 × 2 × 2 × 3 × 7,

но дополнительные множители усложняют, а не упрощают выражение, другие множители от этого не становятся меньше[16].

Возьмем другой пример: 120. Мы можем представить 120 как 12 × 10 и затем 12 как 2 × 2 × 3, а 10 – как 2 × 5. Это дает:

120 = (2 × 2 × 3) × (2 × 5). (A)

С другой стороны, мы можем начать так: 120 = 4 × 30 и далее заметить, что 4 = 2 × 2, а 30 = 2 × 3 × 5. Вместе это дает:

120 = (2 × 2) × (2 × 3 × 5). (B)

Важно отметить, что простые числа в выражениях (A) и (B) одинаковые, различается лишь порядок, в котором они перемножаются. Это показано на рисунке.

Любой способ представления числа 120 в качестве произведения простых чисел дает один и тот же результат.

Эта единственность разложения на множители зафиксирована в следующей теореме[17].

Теорема (основная теорема арифметики). Любое положительное целое (натуральное) число может быть разложено на простые множители единственным образом (если пренебречь порядком множителей)[18].

(Здесь необходимо небольшое пояснение. В случае, скажем, числа 30 это утверждение достаточно ясно. Мы можем представить 30 как 2 × 3 × 5 или как 5 × 3 × 2 – разницы нет, отличается лишь порядок множителей. Простое число имеет всего один простой множитель – само себя. Например, множитель 13 – это 13. Но как быть с 1? Принято говорить, что пустое произведение[19] равно единичному элементу; таким образом, произведение отсутствующих элементов равно 1.)

Сочетая простые числа, мы выстраиваем все положительные целые числа. Простые числа – это атомы умножения.

Насколько много?

Вернемся к вопросу: сколько всего простых чисел существует? Ответ – на следующей строчке.

Теорема. Простых чисел бесконечно много.

Утверждение приписывают Евклиду[20]. Доказательство этой теоремы – математическая жемчужина. Мы не можем доказать ее методом перебора. Очевидно, что время от времени в числовом ряде попадаются простые числа. Вот несколько первых простых чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 и 67.

Но чем дальше мы идем по последовательности простых чисел, тем обширнее становятся промежутки между ними. Если посмотреть на перечень выше, можно увидеть, что два числа отстоят друг от друга максимум на 6 единиц (например, 53 и 59). Но простые числа 89 и 97 отстоят друг от друга на 8 единиц, все целые числа между ними составные. Или вот другой пример: 139 и 149 – их отделяет 10 единиц. Чем дальше мы двигаемся, тем быстрее увеличиваются промежутки между соседними простыми числами. Можно предположить, что в конечном итоге простые числа должны совсем исчезнуть. На самом деле, хотя они и встречаются все реже, их список в числовом ряду не имеет конца. Впрочем, прежде чем говорить об этом уверенно, мы должны привести доказательство.

Ключевая идея – задаться вопросом: а что, если?..

А что, если количество простых чисел конечно? Если мы продемонстрируем, что предположение: «Количество простых чисел конечно» – приводит к абсурдному выводу, то будем считать его ложным[21]. Вслед за Шерлоком Холмсом мы найдем истину, отбросив невозможные варианты, и у нас получится, что простых чисел бесконечно много.

Вот что нам надо будет сделать:

1. Предположить, что количество простых чисел конечно;

2. Показать, что это предположение ведет к невозможному выводу;

3. Сделать умозаключение, что, раз предположение ведет к логическому противоречию, оно ложно;

4. Вывести из этого, что простых чисел бесконечно много.

А теперь перейдем к делу. Предположим, что простые числа можно пересчитать, и посмотрим, к чему это приведет.

Если количество простых чисел конечно, должно существовать наибольшее простое число P – крайнее в ряду простых чисел. В таком случае полный перечень простых чисел будет выглядеть так:

2, 3, 5, 7, 11, 13, …, P.

Перемножим все эти числа и приплюсуем единицу. Назовем получившееся гигантское число N:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Число N – простое[22]? Наше предположение заставляет нас ответить: нет, потому что N больше P, последнего простого числа. Значит, N – составное число, и его можно разложить на множители. Здесь мы попадаем в западню.

Мы знаем, что у N есть простые делители. Может ли таким делителем быть 2? Мы утверждаем: нет. Посмотрите на формулу для вычисления N и обратите внимание, что число в скобках четное, потому что среди множителей присутствует 2:

N = ( × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Таким образом, N на единицу больше некоторого гигантского четного числа. Другими словами, N – нечетное, следовательно, оно не делится на 2.

Ну и ладно. Мы же знаем, что у N есть простой делитель, так что нет ничего страшного в том, что 2 не подходит. Как насчет 3? Посмотрим снова на число в скобках и обнаружим, что среди множителей есть 3:

N = (2 × × 5 × 7 × 11 × 13 × … × P) + 1.

Таким образом, N на единицу больше некоторого гигантского числа, делящегося на 3. Это означает, что при вычислении частного N / 3 мы получим остаток 1. Следовательно, N не делится на 3.

Видите, куда мы движемся? Возьмем очередное простое число, 5. Мы утверждаем, что N не делится на 5, потому что оно на единицу больше числа, без остатка делящегося на 5:

N = (2 × 3 × × 7 × 11 × 13 × … × P) + 1.

Точно так же мы доказываем, что N не делится ни на 7, ни на 11, ни на 13 и ни на какое угодно другое простое число!

К чему мы пришли? Наше предположение о том, что количество простых чисел конечно, привело нас к двум выводам:

– N делится на некое простое число;

– N не делится ни на какое простое число.

Но это же абсурдно! Из ловушки можно выбраться, только если признать, что предположение о конечном количестве простых чисел было ложным. Таким образом,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×