достаточно для передачи дополнительной энергии, поэтому радиопередатчики могут работать на очень малой мощности. Поскольку они действуют в относительно широком диапазоне частот, то менее чувствительны к помехам от других радиосигналов и электрического шума. Это означает, что сигналы можно использовать в средах, где традиционный узкополосный тип принять и распознать невозможно, а поскольку сигнал с частотным расширением спектра перемещается по множеству каналов, неавторизованному абоненту предельно трудно перехватить и декодировать его содержимое.

Технология расширенного спектра имеет интересную историю. Она была изобретена актрисой Хейди Ламарр (Hedy Lamarr) и американским композитором-авангардистом Джорджем Антейлом (George Antheil) как «секретная коммуникационная система» для связи с радиоуправляемыми торпедами, которая не должна была глушиться врагом. Перед своим появлением в Голливуде Ламарр вышла замуж за поставщика военного снаряжения в Австрии, где ей доводилось слышать о проблемах с торпедами на званых обедах с клиентами ее мужа. Спустя годы, во время второй мировой войны, она придумала концепцию изменения радиочастот для противостояния помехам.

Антейл стал известным, заставив эту идею работать. Его наиболее популярной композицией была работа «Балет «Механика» (Ballet Mechanique), партитура которой состояла из 16 пианистов, двух авиационных пропеллеров, четырех ксилофонов, четырех басовых барабанов и сирены. Он применил ту же разновидность механизма, которую ранее использовал при синхронизации пианистов, для изменения радиочастот при передаче с расширенным спектром. Первоначальная система на основе перфорированной бумажной ленты имела 88 различных радиоканалов — по одному для каждой из 88 клавиш пианино.

Теоретически тот же метод мог быть использован для передачи голоса и данных, но во времена электронных ламп, бумажной ленты и механической синхронизации весь процесс был слишком сложен для реального создания и использования. К 1962 году твердотельные электронные компоненты заменили электронные лампы и клавиатуры пианино, и технология была использована на судах ВМФ США для секретной связи во время кубинского кризиса. В наши дни радиосвязь с расширенным спектром используется в американской системе спутниковой связи Air Force Space Command's Milstar, в цифровых сотовых телефонах и в беспроводных сетях.

Частотное расширение спектра (FHSS)

Первоначальная разработка Ламарр и Антейла для радио с расширенным спектром основывалась на системе частотного сдвига. Как следует из названия, технология FHSS разделяет радиосигнал на малые сегменты и в течение секунды он многократно «перескакивает» с одной частоты на другую во время передачи данных этих сегментов. Передатчик и приемник используют синхронизированную модель сдвига, которая определяет порядок использования различных подканалов.

Системы на базе FHSS маскируют помехи от других пользователей, используя уэкополосный сигнал несущей, который многократно изменяет частоту в течение каждой секунды. Дополнительные пары передатчиков и приемников одновременно могут использовать различные модели сдвига в одном и том же наборе подканалов. В любой отдельно взятый момент времени каждая передача, скорее всего, использует свой подканал, поэтому между сигналами помех не возникает. Когда случается конфликт, система повторно отправляет тот же пакет до тех пор, пока приемник не получит верную копию и не отправит подтверждение о приеме обратно на передающую станцию.

Для беспроводных служб передачи данных нелицензированный диапазон 2,4 ГГц делится на 75 подканалов шириной в 75 МГц. Поскольку каждый частотный скачок будет небольшой задержкой для потока данных, передача на основе FHSS осуществляется относительно медленно.

Расширение спектра с прямой последовательностью (DSSS)

В технологии DSSS для передачи радиосигнала по одному каналу шириной 22 МГц без изменения частот используется метод, называемый 11-символьной последовательностью Баркера (Barker). Каждая связь с применением DSSS использует только один канал без каких-либо скачков между частотами. Как показано на рис. 1.3, при DSSS-передаче задействуется большая полоса частот, но меньшая мощность, чем при традиционном сигнале. Цифровой сигнал слева представляет собой традиционную передачу, при которой мощность концентрируется в пределах узкой полосы частот. DSSS-сигнал слева использует то же количество мощности, но распределяет эту мощность на более широкий диапазон радиочастот. Очевидно, что DSSS-канал с шириной 22 МГц является более широким, чем каналы с шириной 1 МГц, используемые в FHSS-системах.

DSSS-передатчик разбивает каждый бит в исходном потоке данных на серии двоичных битовых моделей, называемых чипами, и передает их на приемник, который восстанавливает из чипов поток данных, идентичный исходному.

Поскольку наибольшая помеха, скорее всего, занимает более узкую полосу частот, чем DSSS-сигнал, и каждый бит делится на несколько чипов, приемник обычно может идентифицировать шум и аннулировать его перед декодированием сигнала.

Аналогично другим сетевым протоколам DSSS беспроводная связь осуществляет обмен сообщениями о квитировании (handshaking) в пределах каждого пакета данных для подтверждения того, что приемник может распознать каждый пакет. Стандартная скорость передачи данных в DSSS сети 802.11b составляет 11 Мбит/с. Когда качество сигнала падает, передатчик и приемник используют процесс, называемый динамическим сдвигом скорости (dynamic rate shifting) для ее снижения вплоть до 5,5 Мбит/с. Скорость может снижаться из-за наличия источника электрического шума рядом с приемником или по причине того, что передатчик и приемник расположены слишком далеко друг от друга. Если величина 5 Мбит/с по-прежнему слишком велика для управления связью, скорость падает снова, вплоть до 2 Мбит/с или даже 1 Мбит/с.

Рис. 1.3

Распределение частот

По международному соглашению участок радиочастотного спектра около 2,4 ГГц предполагается резервировать под нелицензированные промышленные, научные и медицинские службы, включая беспроводные сети для передачи данных с расширенным спектром. Однако в разных странах власти принимают несколько отличающиеся частотные диапазоны для точного распределения частот. В табл. 1.1 представлены распределения частот в нескольких зонах.

Таблица 1.1. Распределение нелицензированных частот 2,4 ГГц с расширенным спектром

Регион — Частотный диапазон, ГГц

Северная Америка — 2.4000 2,4835 ГГц

Европа — 2.4000 2,4835 ГГц

Франция — 2,4465 2.4835 ГГц

Испания — 2,445 2,475 ГГц

Япония — 2.471 2,497 ГГц

Любая из стран мира, не включенных в данную таблицу, также использует один из этих диапазонов. Несущественные отличия в распределении частот не являются особо важными (если вы не планируете вести передачу через границу между Францией и Испанией или кем-нибудь, отличающимся в равной

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×