Понятно, почему стремятся увеличить рабочую поверхность детектора, точность его ориентации и время пребывания за плотными слоями атмосферы. Ясно, что геофизические ракеты не могут предоставить здесь таких возможностей, как спутники, особенно специализированные.

Один из них - американский 'Ухуру', запущенный в 1970 году, действовал несколько лет- На борту были установлены два рентгеновских телескопа, с площядью датчиков 880 квадратных сантиметров каждый.

Эти счетчики квантов, направленные в противоположные стороны, вращались вместе со спутником, прощупывая всю небесную сферу. К 1973 году благодаря 'Ухуру' число известных икс-объектов возросло почти впятеро.

Так в 1970 году наметился новый этап их изучения.

Продолжается переворот, который начался в послевоенный период в связи с бурным развитием техники, позволяющей принимать сигналы таинственных невидимох из космоса. Огромный объем принципиально новой инсЬормации, неузнаваемо изменившей наши представления о мироздании, позволили получить радиотелескопы - гигантские наземные чаши-антенны, прослушивающие небо в УКВ-диапазоне. А потом - заатмосферныс счетчики квантов, поднимаемые на высотных аэростатах, геофизических ракетах, искусственных спутниках, космических кораблях, орбитальных станциях.

'Пожалуй, наиболее впечатляющими достижениями внеатмосферной астрономии были выдающиеся успехи рентгеновской астрономии', - считает член- корреспондент Академии наук СССР И. Шкловский. 'Наиболее впечатляющими...' ...Не сказалась ли тут естественная пристрастность астрофизика к милой его сердцу науке?

Судите сами.

Если бы наши глаза каким-то волшебством обрели вдруг способность воспринимать рентгеновские лучи (и только их), то, очутившись за пределами атмосферы, скажем, на борту космического корабля, мы увидели бы поразительную картину. Большинство знакомых нам светил померкло или погасло вообще. Зато многие засияли бы ослепительнее Солнца. А некоторые мигали бы, притом по непонятной на первый взгляд причине (известно, что обычные звезды мерцают только для наземного наблюдателя: тот ведь смотрит на них через 'дрожащую' воздушную кисею).

Внимательный наблюдатель заметил бы, что иные из них меняют свою яркость строго периодически, с точностью часового механизма. Например, Геркулес Х-1 - раз в 1,2378 секунды, Центавр Х-3 - раз в 4,84239 секунды... Откуда такая пунктуальность?

Можно подумать, будто нам сигнализируют таинственные 'зеленые человечки', как полушутливо называют гипотетических представителей внеземных цивилизаций. Надо сказать, всполошились не только фантасты, когда были открыты пульсары - невидимые в обычный телескоп небесные 'маяки', которые регулярно, нередко с удивительной правильностью через равные промежутки времени изменяют интенсивность своего излучения, радиоволнового или рентгеновского.

Сердце екнуло даже у здравомыслящих ученых, подвергающих сомнению само существование инопланетного разума.

А что, если бы мы отправились к такому пульсару посмотреть вблизи, как действует естественный 'хронометр'? 'Если бы астронавт, скорее безрассудный, чем храбрый, отважился приблизиться к нейтронной звезде настолько, чтобы ее видимые размеры сравнялись с лунными на земных небесах, он был бы убит частицами высоких энергий, испепелен рентгеновскими лучами, разорван в клочья силами притяжения', - рисует воображаемую трагедию один из докладов, подготовленных Национальной академией наук США.

Спрашивается: при чем тут нейтронная звезда? Как полагают, именно она виновница смертоносного рентгеновского излучения, которое испускает Геркулес Х-1 или Центавр Х-3. Правда, действует она не в одиночку, а вдвоем с напарником, подобным нашему Солнцу, только в несколько раз более крупным. Будучи сравнительно с ним карлицей, но зато сверхплотной и весьма массивной, она непрестанно перетягивает на себя вещество своего компаньона - раскаленного газообразного шара. На нее беспрерывно переливается целая река плазмы, притом с колоссальной скоростью (100 тысяч километров в секунду). При столь стремительном падении огненной Ниагары выделяется огромное количество лучистой энергии. Преимущественно в рентгеновском диапазоне.

Что касается мигания, то его объясняют, конечно же, не вмешательством неких 'зеленых человечков', включающих-выключающих космический сверхфонарь, а просто-напросто вращением нейтронной звезды вокруг своей оси. Очень быстрым: у Геркулеса Х-1 - с периодом в 1,24 секунды, у Центавра Х-3 - 4,84 секунды.

При каждом таком пируэте в том же темпе поворачивается и поток рентгеновской радиации, ибо источник ее испускает не равномерно во все стороны, а направленно, узким коническим пучком. Точь-в-точь как земной маяк с вращающимся прожектором.

Надо сказать, на эти быстрые пульсации интенсивности наложены медленные, плавно изменяющие ее за 1,7 суток у Геркулеса Х-1 и за 2,1 дня у Центавра Х-3.

(Поясняющая аналогия: если гитару дернуть за струну и начать потом покачивать за гриф, то наряду с обычными звуковыми колебаниями, имеющими высокую частоту, мы услышим и наложенные на них дополнительные вибрации.) Этот эффект вызван тем, что двойная система вращается около общей промежуточной точки - центра обеих масс, причем источник незримой радиации периодически заслоняется от нас видимым светилом, как Солнце Луной во время затмения.

Читатель уже обратил внимание: рентгеновская звезда кружится, словно волчок, необычайно быстро Почему же она не разрывается на куски чудовищными центробежными силами? Именно потому, что она нейтронная, необычайно плотная и сравнительно небольшая (10-20 километров в поперечнике).

За этим понятием - гордость теоретической мысли XX века. Нейтронные звезды были открыты сперва в кабинете, 'на кончике пера', причем физиком, не астрономом. А уж потом, треть столетия спустя, - в небэ, притом астрономией невидимого.

Возможность их существования первым предвосхитил советский физик Л. Ландау, впоследствии академик, лауреат Ленинской и Нобелевской премий. Свою идею он высказал сразу же после того, как был открыт нейтрон (1932 г.). Вслед за физикой, в 1934 году, сказала свое слово и астрономия: они могут возникать при вспышках сверхновых (о них речь впереди), - эту гипотезу выдвинули американские астрономы У. Бааде и Ф. Цвикки.

Что мы знаем о нейтронных звездах сегодня? Они образуются из обычных, когда у тех постепенно выгорает термоядерное топливо и нарушается равновесие между противоборствующими стихиями тепла и тяготения. Гравитационное сжатие, еще недавно сбалансированное термическим расширением, одолевает сопротивление конкурирующих сил, распирающих изнутри гигантскую, больше нашего Солнца, звезду.

И вот результат - коллапс (от латинского 'падать'). За несколько секунд газообразный огненный шар превращается в твердое тело, поперечник которого примерно в 100 тысяч раз меньше первоначального. Катастрофа сопровождается вспышкой, при которой сбрасывается часть массы, в основном из поверхностны* слоев. Но то, что остается, стремительно упаковывается в ничтожную долю прежнего объема. Плотность возрастает в миллиарды миллиардов раз.

Трудно представить подооные метаморфозы, тем более что они протекают мгновенно. Атомы стискиваются так, что не остается пустот между ядрами и электронными оболочками. Одни элементарные частицы вдавливаются в другие (скажем, электроны - в протоны с образованием нейтронов). Происходит нейтронизация вещества. Получается сгусток материи с фантастически жесткой корой километровой толщины. Он спрессовав до невообразимой плотности, которая у него может оказаться больше, чем даже у атомного ядра.

Ядро диаметром 20 километров! Вот что такое рентгеновская звезда. Если бы случилось невозможное - наша планета каким-то чудом столь же быстро перептла в такое состояние, ее поперечник в мгновение ока уменьшился бы в 130 тысяч раз, до 100 метров Одна ее чайная ложечка была бы тяжелее миллиарда тонн.

'Если бы я уронил такую ложку на пол, этот миллиард тонн пробил бы Землю насквозь, вылетел с другой стороны, вернулся бы обратно через ту же скважину и так качался бы подобно маятнику, пока не остановился бы в центре', - поясняет американский астроном Ф. Дрэйк, известный как автор знаменитого проекта ОЗМА, по которому в 1960 году начались первые серьезные поиски сигналов от внеземных цивилизаций.

3.

- Да, по части воображения иные ученые мужи не уступят писателям-фантастам. Не потому ли, что не хсатает достоверных сведений?

- А если наука и впрямь обгоняет фантастику?

Кстати, о фантазии. 'Напрасно думают, что она нужна только поэту. Это глупый предрассудок! Даже в математике она нужна... Фантазия есть качество величайшей ценности', - писал В. Ленин.

- В науке - да. Но в популяризации... Не лучше ли отбирать для непосвященных лишь самое достоверное, апробированное, без фантазерства? Факты и еще раз факты!

- Фактологическое изложение не пробуждает воображение, а усыпляет, загромождает память справочными данными, обилие которых создает иллюзию эрудированности.

'Быть может, эти электроны - миры, где пять материков, искусства, знанья, войны, троны и память сорока веков!' - писал В. Брюсов в 1922 году.

'Мир - рвался в опытах Кюри атомной, лопнувшею бомбой на электронные струи невоплощенной гекатомбой...' - писал А. Белый в 1921 году.

Оба автора были образованнейшими людьми своего времени, но прежде всего поэтами. Так что не будем касаться вопроса, как далеко могло увлечь того и другого воображение, насколько оторвалось оно от физической реальности. Нас интересует другое. Электроны - фикция или факт? Странный вопрос! Судя по приведенным цитатам, он был решен более полувека назад. И уж тем более наивно выглядело бы такое сомнение сегодня, когда электроника окружает нас всюду, даже в домашнем, а не только научном обиходе- Примеров великое множество: от электролампочек до квантовых генераторов, от телевизоров до электронных микроскопов, от транзисторов до электронно-вычислительных машин... А рентгеновская радиация - что порождает ее на земле и в небе? Те же электроны!

Между тем сама мысль о них воспринималась некогда как плод разыгравшегося воображения, фантазерства, не приставшего истинному ученому. Мягко выражаясь, как 'недоказанная гипотеза, применяемая часто без достаточных оснований и без нужды'. На том категорически настаивал не кто иной, как сам В. Ренгген. Человек, который, как выразился один из его хчеников и сотрудников, академик А. Иоффе, 'больше, чем кто-либо из современников способствовал созданию новой физики нашего столетия - физики элементарных процессов и электронных явлений'.

Не признавая понятие 'атом электричества', родившееся в 1897 году, первооткрыватель икс-лучей запрещал даже произносить в стенах Мюнхенского физического института это 'пустое слово, не заполненное конкретным содержанием'. Вето было снято лишь в 1907 году, после многолетней 'борьбы за электрон', в которой участвовал и молодой А. Иоффе, смело вступавший в дискуссии с суровым мюнхенским профессором, лауреатом первой из Нобелевских премий, присуждаемых с 1901 года.

'Гипотез не измышляю', - мог бы повторить вслед за И. Ньютоном и В. Рентген, автор единственного серьезного научного предположения (оно, увы, оказалось неверным, но об этом речь впереди). Виртуоз экспериментаторского искусства, великий немецкий физик поклонялся Его Величеству Опыту. Факту, а не фикции (за каковую почитал и 'безумную идею' - мысль об 'атоме электричества').

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×