Глава 4. Модели
? Понятие модели. Понятие модели некоторого объекта возникает в связи с необходимостью изучения возможностей использования этого объекта для решения проблем, решения задач, достижения целей деятельности. Поэтому такой объект логично называть также
Будем исходить из следующего определения:
Для систем:
В свою очередь, для технологии –
Для основной и дополнительной частей технологии –
«
В свою очередь, для моделируемого объекта –
Для частей моделируемого объекта –
По своей сути модель дает ответы в отношении изучаемого объекта некому субъекту, изучающему этот объект с различными целями – анализа, исследования, мониторинга и т.д. Другими словами, модель – это источник новых знаний об изучаемом объекте, необходимых для пополнения знаний изучающего о данном объекте. Тогда можно определить, что
Модель изучаемого объекта можно называть также и моделирующим объектом, а изучаемый объект – моделируемым объектом.
Каждая известная модель объекта имеет один или несколько известных главных признаков, которые рассматриваются в виде
Другими словами, общий Принцип моделирования состоит в том, что
Составление единой модели какого-либо объекта в виде, позволяющем получить все ответы на вопросы в отношении изучаемого объекта, невозможно и по этой причине любые реальные объекты представляют с помощью
В зависимости от цели изучения объекта – анализ, исследование, проектирование и т.д., используются различные способы построения моделей. Рассмотрим наиболее распространенные виды моделей.
? Концептуальные, структурные и математические модели динамических систем.
Как правило, все модели являются концептуальными, структурными или математическими. Рассмотрим эти виды моделей на примере моделирования динамических систем[34] .
Динамической системой называется упорядоченное множество взаимно связанных друг с другом элементов, существующих в реальной действительности, т.е. в пространстве и времени.
К внешней среде динамической системы относится все, не являющееся элементом данной системы.
Каждый элемент системы принято характеризовать совокупностью количественных и/или качественных признаков, изменяющихся с течением времени.
Состояние (поведение) системы в каждый фиксированный момент времени описывается однозначным выражением характеристик элементов системы.
Классическими примерами динамической системы являются система «Земля-Луна»; солнечная система, элементами которой являются Солнце, планеты и кометы; Галактика, элементами которой являются отдельные звезды, созвездия и планетные системы (в том числе и Солнечная система).
В настоящее время в теории моделирования систем различают три уровня: концептуальное моделирование, структурное моделирование; математическое моделирование.
Классическими примерами концептуальных и структурных моделей являются:
– геоцентрическая модель Птолемея, согласно которой Земля является центром всей Вселенной; Солнце, звезды и Планеты вращаются вокруг земли. Это пример модели, не удовлетворяющей общему Принципу моделирования, так как
– гелиоцентрическая модель Коперника, согласно которой Солнце находится в центре околоземной Вселенной, планеты движутся вокруг Солнца, звезды удапены на громадные расстояния от Солнца, наблюдаемые перемещения звезд на небе не истинные, а кажущиеся за счет суточного вращения Земли вокруг своей оси;
Классическими примерами математических моделей являются:
– законы движения планет, установленные И. Кеплером в математической форме;
– математическое моделирование И. Ньютоном, Л. Эйлером механического движения твердых тел;
– закон сохранения энергии и материи М.В. Ломоносова.
В целом математические модели по степени общности и детализации делятся на следующие классы:
1) математические теории реальных процессов и ситуаций;
2) прикладные математические модели;
3) математические задачи.
Модели класса «математическая задача» содержат конкретную математическую формулировку задачи, где указаны известные и неизвестные величины и их связывающие математические соотношения, цифровые данные для известных величин, а также четко сформулировано, что требуется найти, установить или определить.
Модели класса «прикладные математические модели» также содержат ряд входных и выходных величин, связывающие их математические соотношения, при этом не указано конкретно, какие величины являются известными, а какие неизвестны. Указывается лишь в общем виде предполагаемый перечень задач, которые можно сформулировать и решить на основе данной прикладной модели.