location and speed with great accuracy.

Without constant checking, however, uncertainties about our position could grow larger over time. And no system was foolproof. Mission control’s calculations of our location would be useless if our radio failed and they could not share them with us. We also had one gyroscope set in the Apollo spacecraft, which we tested mercilessly before flight. Yet no matter how perfect we could make it, a little friction would always be acting on the gyroscopes. We needed to be able to calculate and correct any drift.

So, Dick and I focused on discovering our attitude and location with no help from the ground. We could be in lunar orbit with no working radio, and three lives depending on our own calculations to thrust the spacecraft out of lunar orbit in the right direction for a precise reentry into Earth’s atmosphere many days later. We needed at all times to be able to independently work out our state vector—that is, to find out precisely where we were within the Earth-moon system, how fast we were going, and what direction we were headed. We were navigators, and although we had some sophisticated equipment, Dick and I still had to master the same skills that ancient mariners once used to cross the oceans.

We would navigate using a sextant much like those used for centuries by seafaring navigators. The sextant was located in the equipment bay, at the bottom of the footpads where our feet usually rested. In space, an astronaut could float down there and have enough room to look through the optical equipment while in a standing position. We’d peer through a telescope with a wide field of view to locate stars we used as guide stars, then shift to a telescope with a much narrower field. By using the optics for sighting and the onboard computer to measure the line of sight to a star, then repeating that procedure with several stars, we could determine our exact attitude in space. By sighting on different stars and measuring their angles, the computer could average out the information.

Using that same equipment but this time using a split prism to form both a fixed and a movable line of sight, we could also precisely measure the angle between stars and the horizon of Earth or the moon. Their positions would look different against the starry backdrop as we traveled between the two, and these differences could be measured. The more sightings we made, the more accurately the computer could calculate our location and direction, until we knew precisely where we were.

It sounds complicated, but it was technologically simple. There were no science-fiction–like computers to tell us what to do and make enormous calculations on our behalf. We relied on skills learned in extensive training and memorized the stars that would surround us on our journey. If we lost our navigation computer or our gyroscope, we had an even more basic backup method. We could resort to a World War II–era gun sight. We could clip this optical device to the edge of a spacecraft window, look through it just as you would with a hunting rifle, and line up the crosshair with a known star. We would then know the direction of the spacecraft’s line of thrust, and that information was better than knowing nothing.

This all required a great deal of astronomical knowledge on our part, learning and remembering dozens of different stars that we could use to help us navigate. This knowledge was vital, however, in case we ever lost radio contact with the ground. We would head to the Griffith Observatory in Los Angeles, or the Morehead Planetarium in North Carolina, and use their planetarium domes to simulate the view of stars from space. Tony Jenzano, the planetarium director at Morehead, had a great way of training us. To begin, he would ask us to close our eyes. He would then spin the star field on the planetarium dome, ask us to open our eyes and tell him where we were. Over time, he would gradually decrease our field of view. It became increasingly harder to identify our position in the sky with fewer stars in our vision, so we really had to memorize them. Eventually he put us in a small box inside the planetarium with a ten-degree window cut into the front. Once again he’d spin the view and we would have to give him our position. Man, that was hard. But we were seeing the same view that would fill our spacecraft optics, so we had to master it.

The focus on astronomy meant that whenever I was flying anywhere in a T-38 at night, I spent far more time watching the stars than I did looking at the ground. On moonless nights, above the clouds and away from city lights, the star view from my cockpit was stunning, and all the more interesting because I could now name hundreds of those stars.

While I was spending time in Downey with Dick to ensure the Apollo 12 command module was ready and training with Dave and Jim in case we needed to fly the mission, other important events were taking place. After the success of the Apollo 9 mission, NASA felt confident about flying back to the moon in May of 1969. With Apollo 10, they sent both a command module and a lunar module. Some spectacular test piloting proved that NASA was ready to go all the way on the next flight: a lunar landing.

Apollo 11 was in many ways the whole point of NASA’s efforts over the preceding eight years. The Apollo program had been created to land humans on the moon and return them safely to Earth. I wasn’t going to get an opportunity to fly until after that mission had taken place at least once. Although NASA still had an ambitious schedule of lunar landing missions, I had noticed how politicians were still whittling back the budget. Rather than the fulfillment of an ambition, I hoped that Apollo 11 would be the beginning of sustained exploration of the moon. Not least, I will admit, because I wanted to fly there myself and didn’t want the program to end before I had my chance.

I vividly remember the moment in July 1969 when mission commander Neil Armstrong and Buzz Aldrin, his lunar module pilot, touched down on the moon. I had been on yet another trip to the North American plant and was in the cockpit of my T-38 at El Toro Marine Corps Air Station in Orange County, south of Downey, preparing to fly home. The tower at the airfield told me that Apollo 11 was about to land and asked me if I would like them to relay the audio coverage. “Absolutely,” I replied. “I am staying right here.” So I sat in the aircraft and listened to the magical, nail-biting, unreal moment as guys I knew gingerly guided a spacecraft to the lunar surface. We had done it. Humans were on the moon.

I didn’t linger long enough to hear live coverage of Neil setting foot on the surface. I headed back to Houston, looking up into the late-afternoon sky and thinking, “My God. There are people up there, on the moon.” My thoughts naturally strayed to my friend Mike Collins, orbiting the moon solo in the command module. It was a job I hoped I would soon be doing. For Apollo 12, I’d be one step closer to the action.

As Apollo 12’s backup command module pilot, it was my job to strap the prime crew into the spacecraft out on the pad just before launch. I was in the spacecraft on November 14, launch day, making sure all of the switch settings were correct before Pete and his crew arrived. As I stood in the foot well of the spacecraft, the crew arrived, laughing and cracking jokes, and I began strapping them in. When two of them were inside, I had to climb out as there wasn’t room for me anymore. After I squeezed out, Dick Gordon slid into the center couch, and I reached back inside to help strap him in.

As I wished him luck, I have to admit I was still a little jealous. Dick was about to fly to the moon with a couple of great guys. Pete Conrad’s fearless and fun streak created a freedom among his crew to bond in a way I had yet to experience.

Once the hatch was closed, I headed down the elevator to a waiting car to take me back to the viewing stand for the launch. It was raining really hard by the time I reached the stands, but I never gave it a thought. The Saturn V was a tough rocket, and I figured that it would take more than a little water to postpone a launch.

The rocket lifted off, right on schedule. And then, less than half a minute after launch, a huge lightning bolt struck the spacecraft. The Saturn V was poking up into the clouds, and the lightning found a perfect grounding through the spacecraft and rocket exhaust all the way down to the pad. We scrambled to find a radio. I could hear Pete talking a mile a minute as they tried to work out what had happened. NASA could have called off the mission right then, but they decided to keep going and see if everything still worked. The command module had temporarily lost its internal systems, but the separate system that guided the rocket was still functioning and kept them on course.

By the time they got into orbit, the mission was in pretty good shape. Basic, well-insulated equipment meant that the spacecraft survived. With some quick thinking, the power and instruments were brought back online. Once again, I was glad that it had been designed with such well-tested components. It was amazing—everything was fine—but I bet that the launch was a very scary experience for the crew. I know I would probably have crapped myself.

Вы читаете Falling to Earth
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату