проектировании и конструкции, что снижает его полезное действие и может даже сделать его применение опасным при определенных условиях.

Ил. 3. Схема, с помощью которой автор демонстрирует ошибку в конструкции остроконечного молниеотвода Франклина и логически доказывает, что заряженную сферу можно, для наглядности, рассматривать как нагретую до высокой температуры, тепловая энергия которой свободно выделяется с заданной интенсивностью

Для пояснения этого любопытного обстоятельства я позволю себе сослаться на иллюстрацию 3, в которой s — металлическая сфера с радиусом r, подобная емкостному терминалу электростатической машины, снабженная остроконечным выводом длиной h. Известно, что последний обладает свойством быстро рассеивать аккумулированный заряд в атмосферу. Чтобы разобраться в механизме этого действия в свете сегодняшнего знания, мы можем уподобить электрический потенциал температуре. Представим, что сфера s нагрета до температуры Т и что вывод, или металлический стержень, является превосходным проводником теплоты, так что его крайняя точка имеет ту же самую температуру Т. Тогда, если другая сфера с бoльшим радиусом r1 вращается вокруг первой и имеет температуру Т1 по контуру, очевидно, что между оконечностью стержня и окружающей средой возникнет разность температур, равная Т — Т1, что обусловит отток теплоты. Конечно, если бы нагретая сфера не влияла на окружающую среду, эта разность температур была бы большей, и выделялось бы больше теплоты. В точности то же самое происходит в электрической схеме. Пусть q означает количество заряда, тогда сфера, а вследствие ее высокой проводимости и стержень будут иметь потенциал q/r. Потенциал среды вокруг острия стержня составит

q/r1q / r + h и следовательно, их разность будет равна

q/r — q / r + h = qh / r (r + h)

Теперь допустим, что применена сфера S с гораздо большим радиусом R = nr и с зарядом Q, тогда, по аналогии, разность потенциалов будет равна Qh/R (R + h). Согласно элементарным законам электростатики потенциалы двух сфер s и S будут равны, если Q = nq, и в таком случае Qh/R(R + h) = nqh/nr (nr + h) = qh/r(nr + h). Таким образом, разность потенциалов между острием стержня и окружающей его средой будет меньше в пропорции r + h/nr + h, когда используется большая сфера. В ходе многих научных проверок и опытов это важное наблюдение не принималось во внимание, что в результате привело к серьезным заблуждениям. Его значение состоит в том, что свойства заостренного стержня полностью зависят от линейных размеров электризуемого тела. Свойство стержня отдавать заряд может быть полностью утрачено, если последний будет очень большим. По этой причине все заостренные концы и выступы на поверхности проводника таких огромных размеров, как Земля, были бы совершенно бесполезны, если бы не иные факторы. Пояснения по этому поводу будут даны со ссылкой на иллюстрацию 4, в которой наш мастер импрессионизма наглядно демонстрирует высказывание Франклина о том, что его стержень извлекает электричество из облаков. Если бы Земля не была окружена атмосферой, которая обычно имеет противоположный заряд, она бы вела себя, несмотря на все неровности поверхности, подобно отполированному шару. Но по причине наэлектризованности воздушных масс и облаков отдача электричества в значительной степени снижается. Таким образом, на иллюстрации 4 мы видим, что положительный заряд облака взаимодействует с эквивалентным разноименным зарядом в Земле, плотность которого на поверхности последней уменьшается с кубом расстояния от статического центра облака. Тогда кистевой электрический разряд образуется на конце стержня и совершаются действия, которые прогнозировал Франклин. Кроме того, происходит ионизация окружающего воздушного пространства, оно становится проводником, и в итоге молния может поразить здание или какой-либо другой близлежащий объект. Эффективность остроконечного молниеотвода, по замыслу Франклина, состояла в рассеивании заряда, но на деле оказалось не так. Точные замеры показывают, что пройдет немало лет, прежде чем электричество, аккумулированное в одном облаке средней величины, будет отведено или нейтрализовано посредством такого молниеотвода. Заземленный стержень способен сделать безвредным большинство получаемых им ударов молнии, впрочем, время от времени заряд уходит в сторону и причиняет ущерб. Однако на что очень важно обратить внимание: он провоцирует возникновение опасных и рискованных моментов вследствие ошибки, заложенной в его конструкции. Заостренный конец, считавшийся полезным и совершенно необходимым для его функционирования, является в действительности недостатком, значительно принижающим утилитарное значение устройства. Я построил значительно улучшенный образец грозозащитного разрядника, для которого характерно применение терминала значительной площади и большого радиуса кривизны, что делает невозможной чрезмерную плотность заряда и ионизацию воздушной массы[11]. Такие грозозащитные разрядники действуют как квазирепелленты и до настоящего времени ни разу не были пробиты, несмотря на то что подвергаются этой опасности в течение долгого времени. Их безопасность доказана экспериментально, и они значительно превосходят в этом качестве изобретение Франклина. Их применение может сберечь ежегодно утрачиваемое имущество стоимостью миллионы долларов.

Ил. 4. Рисунок остроконечного молниеотвода Франклина, которым Тесла доказывает, что такой заостренный вывод, как правило, не смог бы и за многие годы извлечь электричество из одного- единственного облака

III. Странное недоразумение в области радиосвязи

Для массового сознания это сенсационное достижение создает впечатление одного-единственного открытия, но в действительности это метод, успешное применение которого несет в себе использование огромного количества открытий и усовершенствований. Я представлял себе это достижение именно в таком свете, когда брался за решение проблем в области беспроводной связи, и именно благодаря этому обстоятельству мое понимание основных принципов этого метода не вызывало сомнений с самого начала.

В процессе работы над асинхронными электродвигателями у меня возникло желание испытать их на большой скорости, и с этой целью мною сконструированы генераторы переменного тока сравнительно высоких частот. Вскоре поразительные свойства токов захватили всё мое внимание, и в 1899 году я приступил к систематическому исследованию их характеристик и возможностей применения на практике. Первым доставившим радость результатом моих усилий в этом направлении была передача электрической энергии по единственному проводу без обратного, о чем рассказывал в своих лекциях и выступлениях перед несколькими научными обществами здесь и за границей в 1891 и 1892 годах. В этот период, когда я работал с колебательными преобразователями и генераторами на частотах до 200 000 циклов в секунду, меня всё более стала захватывать идея использования Земли вместо провода, позволяющая полностью обходиться без проводника. Необъятность земного шара казалась непреодолимым препятствием, но после длительного изучения предмета я убедился, что это дело стоящее, и в своих лекциях перед Институтом Франклина и

Вы читаете Статьи
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×