известное мне уже давно и возможности которого я использовал для производства вакуумных рубашек и всевозможных ламп накаливания, а само его впоследствии счел крайне важным, если не сказать существенным, для
Хотя к этому результату можно прийти, применяя статическую машину, а также обычную индукционную катушку, дающую достаточно высокое напряжение, я обнаружил, что в значительно большей степени подходящим аппаратом, обеспечивающим к тому же максимальную быстроту в работе, является катушка с разрядником. Лучше всего соблюдать следующий порядок действий: сначала из лампы откачивается воздух с помощью обычного вакуумного насоса до достаточно высокой степени разрежения, хотя мои опыты доказали, что это совсем не обязательно, так как я посчитал возможным создавать вакуум, начиная с низкого давления. После создания вакуума в колбе лампа присоединяется к клемме катушки с разрядником предпочтительно с высокой частотой колебаний, и обычно отмечается следующее явление: сначала по лампе растекается молочно-белый свет, при высокой степени разрежения в колбе стекло может фосфоресцировать в течение короткого времени. Во всяком случае, свечение, как правило, быстро исчезает, а белый свет концентрируется вокруг электрода, после чего на некотором расстоянии от последнего формируется темное пространство. Вскоре после этого свет приобретает красноватый цвет, а клемма очень сильно нагревается. Этот нагрев, однако, наблюдается только на мощных аппаратах. На этой стадии целесообразно внимательно следить за лампой и контролировать напряжение, так как электрод может быстро сгореть.
Спустя некоторое время красноватый свет исчезает, потоки опять становятся белыми, после чего они, ослабевая, пульсируют вокруг электрода, пока окончательно не исчезнут. Между тем свечение стекла становится всё более и более интенсивным, а то место в колбе, куда поток бьет, становится очень горячим, в то же время свечение вокруг электрода исчезает, и он до такой степени охлаждается, что стекло вокруг него может быть, как ни удивительно, холодным, как лед. Газ в колбе к этому времени достигает необходимой степени разрежения. Процесс можно ускорить, если попеременно осуществлять нагревание и охлаждение и использовать небольшой электрод. Следует добавить, что точно так же можно использовать лампы с наружными электродами. Пожалуй, будет представлять интерес примечание, что при определенных условиях, более глубоким исследованием которых я занимаюсь, давление газа в сосуде можно увеличивать с помощью электричества.
Полагаю, что разрушение электрода, которое неизменно происходит, связано с резким снижением температуры. В момент, когда электрод становится холодным, лампа готова для производства рентгеновских отпечатков. Как только электрод становится таким же горячим, как стекло, — это верный знак, что вакуум недостаточно высок или что электрод слишком мал. Для высокоэффективной работы внутренняя поверхность колбы, на которую наталкивается катодный поток, должна производить впечатление, будто стекло находится в жидком состоянии.
Я обнаружил, что в качестве охлаждающей среды лучше всего применять потоки холодного воздуха. Применяя этот способ, можно успешно работать с лампой, имеющей очень тонкие стенки, при этом прохождение лучей не встречает значительных препятствий.
Хочу призвать не удерживать экспериментаторов от использования стеклянной колбы, поскольку убедился, что непрозрачность стекла, так же как прозрачность алюминия, до некоторой степени преувеличена, поскольку очень тонкий алюминиевый лист отбрасывает ясно различимую тень, в то же время удалось получить отпечатки через толстую стеклянную пластину.
Описанный выше метод ценен не только как способ получения сколь угодно высоких вакуумов, но он еще более важен тем, что наблюдаемое явление проливает свет на результаты, полученные Ленардом и Рентгеном.
Хотя феномен разрежения при описанных выше условиях допускает различные интерпретации, основной интерес вызывает одна из них, которой я придерживаюсь, то есть фактически происходит выброс частиц сквозь стенки колбы. В последнее время я замечал, что колба начинает действовать должным образом на чувствительную пластину только с момента, когда разрежение становится заметным, а производимый эффект наиболее ярок, когда процесс разрежения наступает быстро, даже несмотря на то, что фосфоресценция может и не проявиться особенно ярко. В таком случае очевидно, что два явления тесно связаны и всё более убеждают, что нам приходится иметь дело с потоком материальных частиц, которые с большими скоростями падают на чувствительную пластину. Основываясь на мнении лорда Кельвина о скорости выбрасываемых частиц в лампе Крукса, мы при очень высоких потенциалах без труда добьемся скоростей в целую сотню километров в секунду. Теперь, с другой стороны, встает известный вопрос: выбрасываются частицы из электрода или из заряженной поверхности вообще, включая вариант с наружным электродом, сквозь стеклянные или алюминиевые стенки или они просто ударяются о внутреннюю поверхность и вырывают частицы из внешней стороны колбы, действуя исключительно механически, подобно тому, как разбивается шеренга бильярдных шаров? До сих пор большая часть явлений указывает на то, что они выбрасываются через стенку колбы, из какого бы материала она ни была сделана, и я нахожусь в поиске дополнительных решающих свидетельств в этом направлении.
Возможно, неизвестен факт, что даже обычный стример, внезапно и под большим давлением вырываясь из клеммы разрядной катушки, проходит сквозь толстую стеклянную пластину, как будто ее не существует. Несомненно, что с помощью такой катушки достижимы напряжения, которые будут выбрасывать частицы, движущиеся прямолинейно, даже при атмосферном давлении. Я получил отчетливые отпечатки в условиях обычного атмосферного давления не с помощью стримеров, как это делали некоторые экспериментаторы, применяя статические машины или индукционные катушки, а с помощью практического вбрасывания, при этом образование стримеров полностью исключалось благодаря тщательному статическому экранированию.

Специфическая особенность рентгеновских лучей состоит в том, что частоты, от низких до максимально достижимых, по-видимому, не влияют на качество производимых действий, за исключением того, что они становятся интенсивнее при более высоких частотах, вероятно, это обусловлено тем фактом, что в этом случае также повышается максимальное напряжение на катоде. Это возможно только при исходной посылке, когда воздействия на чувствительную пластину обусловлены выбросом частиц или вибрациями, намного превышающими любую частоту, какую мы можем получить с помощью разрядов конденсатора. Сильно возбужденная лампа окутана облаком фиолетового света, простирающегося вокруг нее более чем на фут, но с другой стороны этого видимого явления нет никакого достоверного доказательства существования волн подобных световым. С другой стороны, тот факт, что светонепроницаемость находится в определенной пропорциональной зависимости от плотности вещества, является веским аргументом в пользу материальных потоков, то же самое можно сказать и об эффекте, открытом профессором Дж. Дж. Томсоном.
Можно получить важное свидетельство, доказывающее природу излучений, и добиться успеха, повышая четкость отпечатков, если усовершенствовать пластины, сделав их чувствительными к механическому удару или импульсу. Для этой цели существуют соответствующие химические препараты, а разработка этого направления может привести к отказу от применяемой сейчас пластины. Более того, если нам приходится иметь дело с потоками материальных частиц, то, очевидно, представляется возможным подобрать для пластины соответствующий материал, чтобы получить эффективную химическую реакцию.
С помощью описанных аппаратов на пластине получаются отчетливые отпечатки. Представление об интенсивности излучений дает мое наблюдение: можно без труда получать отпечатки при сравнительно короткой экспозиции с расстояний во многие футы, в то же время для небольших расстояний и тонких предметов применяется экспозиция в несколько секунд. Прилагаемый снимок являет собой тень медной проволоки, спроецированной с расстояния 11 футов сквозь деревянный щит над чувствительной пластиной. Это был первый снимок, сделанный усовершенствованным аппаратом в моей лаборатории. Подобный отпечаток был получен сквозь тело экспериментатора, стеклянную пластину толщиной почти в 3/16 дюйма и