ток лишь на несколько секунд, чтобы сильно озонировать атмосферу большого зала. Данные токи способны создавать химические соединения, важнейшее из которых — соединение атмосферного азота с кислородом. Это открывает беспредельные возможности, к достижению которых я всеми силами стремился в течение долгого времени, а именно: получение азотных соединений из атмосферы в промышленном масштабе фактически без иных материальных затрат, кроме механической энергии. Если производить этим способом только удобрения для почвы, польза для человечества была бы неизмеримой. Из упомянутого выше действия озона следует, что экспериментатор должен воспользоваться указанными мерами предосторожности, поскольку если в малых количествах озон является дезинфицирующим средством, то генерированный в больших количествах, он небезопасен.

Выполняя неприятную обязанность, скажу в этой связи несколько слов относительно «прозревания слепых» с помощью рентгеновских лучей. Упомянутая сенсация получила широкое распространение в газетах. Но разве не жестоко вселять подобные надежды, когда для этого нет никаких оснований? Ибо доказано лишь, что лучи не являются поперечными колебаниями. Если бы они оказались таковыми, мы обязательно нашли бы способ их преломления, чтобы стало возможным спроецировать достаточно малое изображение на сетчатку глаза. В действительности же реально спроецировать только тень очень небольшого предмета. Какую пользу можно извлечь из применения лучей с такой целью? В конечном счете с помощью отпечатка на сетчатой оболочке глаза контур небольшого предмета может быть опознан, но чтобы получить такое ощущение, чувства осязания более чем достаточно. Известно, что световые ощущения вызываются двумя способами — посредством механического удара и прохождения электрического тока. Оба эти процесса, полагаю, присутствуют в рентгеновских потоках, и, следовательно, можно предположить такого рода воздействие на зрительный нерв. Должен, однако, признаться, что я не могу подтвердить некоторые эксперименты, о которых сообщалось. Например, если держать руку перед закрытыми глазами, тень от нее легко различима, почти так же, как перед зажженной свечой; но когда закрыта трубка и проникновение света из нее совершенно исключено, мне не удается получить такое же ощущение. Следовательно, второй опыт объясняется прежде всего обычным светом, или же мои трубки работают иначе по сравнению с трубками других экспериментаторов. Будет, вероятно, уместно напомнить в этой связи, что при обычном ярком солнечном свете, особенно в южном климате, легко различать тени предметов и даже их примерные очертания с закрытыми глазами.

Исходя по-прежнему из посылки, что мы действительно имеем дело с материальными потоками, важно выяснить, при каких условиях лучше всего производить отпечатки на чувствительный экран или пластину. Прежде всего экспериментатор отметит, что, работая с определенной лампой и катушкой, он имеет две возможности для улучшения четкости отпечатков. Одна из них, если можно так выразиться, находится в лампе, другая — в катушке. Катушка, обычно состоящая из множества витков тонкого провода, очень чувствительна к изменению электрической емкости тел, подключенных к ее клеммам. Следовательно, электрическая емкость этих тел в значительной степени определяет разность потенциалов в такой катушке. При определенной степени разрежения эта емкость достигает такой величины, что напряжение возрастает до максимума, а это приводит к наибольшей скорости катодного потока и, как следствие, наиболее интенсивному излучению. Но при высокой степени разрежения катодные потоки, возможно, будут недостаточно обильными, как обычно и происходит. Чтобы добиться наилучшего результата, необходимо в целях согласованного взаимодействия этих двух факторов тщательно определять размеры лампы, а это практически весьма сложно сделать ввиду того, что экспериментатор вынужден использовать промышленные лампы, которые далеко не всегда являются самыми подходящими для его катушки. Такой несложный анализ указывает на огромное преимущество катушки, не имеющей тонких проводов и способной вырабатывать во вторичном контуре ток, превышающий потребности даже самой большой лампы.

После того как врач научится умело обращаться со своим аппаратом, он отметит, что для получения наилучшей резкости изображения, которая зависит главным образом от расстояния и степени непрозрачности исследуемого предмета, ему придется поддерживать определенное напряжение на клеммах трубки. Само собой разумеется, что резкость изображения тем выше, чем меньше площадь места, из которого исходят лучи, но это верно лишь для тех случаев, когда снимки делают с очень небольшого расстояния. Когда расстояния большие, использовать совсем маленькую излучающую поверхность невыгодно, поскольку в этом случае плотность излучения уменьшается до такой степени, что его действие крайне слабое. Разобравшись с этим вопросом, мы понимаем: при интенсивном излучении более плотные части тела тоже проницаемы и многие подробности теряются, хотя и при менее интенсивном излучении снимок может быть в целом слишком слабым, чтобы выявить существенные подробности.

Чтобы наглядно проиллюстрировать, как следует действовать наилучшим образом, я воспользуюсь простейшим примером. Предположим, что между двумя кусками черного сукна находится инородное тело, это может быть монета, и требуется определить ее местонахождение. Мы можем сделать это, поместив, к примеру, кусок картона позади ткани и затем выстрелив с определенного расстояния зарядом из мелкой дроби по сукну в то место, где предположительно находится монета. Дробь пройдет сквозь сукно во всех точках попадания, кроме того места, где находится монета, и на расположенном позади сукна картоне оно четко обозначится отсутствием отметин. Точно так же мы поступаем, направляя рентгеновские лучи на местонахождение подобного тела. Рентген вооружил нас ружьем, чтобы стрелять из него, — поистине замечательным ружьем, стреляющим пулями, проникающая способность которых тысячекратно превышает возможности пушечного ядра, и посылающим их, вероятно, на расстояние многих миль со скоростью, которая больше не может быть достигнута ни одним известным нам способом. Эти пули так малы, что мы можем стрелять ими по нашим тканям в течение дней, недель, месяцев и лет, по всей видимости, без пагубных последствий. Вместо картона, показывающего траекторию полета пуль, он дал нам то, что, по сути, называется экраном Рентгена, который начинает светиться во всех тех местах, куда попадают пули. Там, где они не могут попасть в экран из-за вмешательства непрозрачного тела, встающего на их пути, экран не светится, и мы видим теневой отпечаток предмета. Достаточно просто спроецировать теневое изображение предмета таким способом, но когда требуется показать более мелкие структурные детали предмета, возникают трудности. Сразу же обнаружится, что для достижения этой цели с наилучшим результатом необходимо в той или иной степени осуществить два условия. Во-первых, экран требуется изготовить из материала, способного засветиться от самого незначительного удара; и, во-вторых, все пули должны быть одинаковыми по величине и двигаться с одной скоростью. Ни одно из этих условий до сих пор не осуществлено на практике, потому что для всех известных нам веществ требуется сильный удар, чтобы вызвать свечение, и пока не найден способ, позволяющий добиться единообразия в скорости и величине гипотетических пуль. Не нужно долгих размышлений, чтобы прийти к заключению, что пули должны лететь с определенной скоростью, которая при всех условиях даст наибольшую степень изображения. Эта скорость легко определяется опытным путем. Резкость изображения будет, очевидно, наилучшей, если пули, проходящие сквозь наиболее плотные части тела, поражают экран так слабо, что не вызывают его свечения, в то время как пули, проходящие сквозь области с несколько меньшей плотностью, наталкиваются на экран с достаточной силой, чтобы заставить его слабо светиться. Чем более чувствителен экран к столкновению, то есть чем слабее удар, заставляющий экран светиться, тем больше деталей будет выявлено. Отсюда следует, что для высокоточного применения рентгеновских лучей наиболее подходящим является вещество не с наибольшим свечением, но с наибольшей чувствительностью.

Изложенные выше соображения убедили меня взять на вооружение следующий метод, который на поверку оказался весьма успешным. Сначала экран Рентгена прикладывается к предмету, который подлежит исследованию, при этом напряжение на клеммах трубки сильно понижено. Затем напряжение медленно и постепенно повышается. Некоторое время спустя вы увидите, что при определенном напряжении теневое изображение исследуемого предмета будет наиболее отчетливым. Но поскольку вакуум продолжает возрастать, напряжение, как правило, поднимается, и изображение теряет четкость, хотя экран начинает светиться более ярко. Как только четкость немного снижается, экспериментатор должен на короткое время изменить направление тока, что приведет к некоторому уменьшению вакуума. Когда ток опять начнет идти в том же направлении, в каком он шел сначала, то есть в направлении, при котором вакуум медленно и постепенно усиливается, изображение вновь становится четким, и с помощью такой несложной манипуляции можно добиться наилучшего результата. Впрочем, этот прием несет в себе еще одно преимущество, ибо частое реверсирование движения тока на обратное приводит к более яркой фосфоресценции экрана. Производя съемку, нам следует наблюдать за работой лампы по экрану и умело

Вы читаете Статьи
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×