укрепленного на стеклянном стержне v, и платиновой проволоки w, впаянной, как обычно, в противоположный конец трубки. Алюминиевая заглушка А фактически не соприкасается со стенкой из кварцевого стекла, а находится на небольшом расстоянии, отделенная от него сплошным узким станиолевым кольцом r. Наружное пространство между стеклом и заглушкой А заполняется герметизирующим веществом с способом, который я опишу позже. F — защитный экран, обычно используемый при проведении научных наблюдений.

Так вот, глядя на экран в направлении от F к T, мы увидели, что на светящемся фоне проступают темные линии, воспроизведенные в нижней части схемы. Кривая e и прямая w были, конечно, сразу же опознаны как очертания катода e и дно заглушки А соответственно, хотя из-за оптического обмана они выглядели значительно ближе друг к другу, чем в действительности. Например, если расстояние между e и о составляло пять дюймов, то на экране эти линии, казалось, находились в двух дюймах одна от другой. Эта иллюзия легкообъяснима и совершенно не важна, за исключением того, что это явление может иметь значение для врачей и о нем следует помнить, проводя обследование с использованием экрана, так как по причине вышеописанного эффекта, который иногда проявляется в немыслимых искажениях, можно получить совершенно ошибочное представление о расположении различных органов обследуемого, грозящее ненужным хирургическим вмешательством. Но если линии e и w были легкообъяснимы, то кривые t, g, а поначалу озадачивали. Вскоре, однако, выяснилось, что расплывчатая линия а была тенью края алюминиевой заглушки, значительно более темная линия g — тенью от края стеклянной трубки T, a t — тенью станиолевого кольца r. Эти тени на экране F определенно доказывали, что фактор воздействия на флюоресцирующий экран исходил из пространства вне лампы по направлению к алюминиевой заглушке и главным образом из зоны, через которую проходили основные возмущения или потоки, излучаемые трубкой через мембрану; его появление нельзя объяснить более правдоподобно, чем предполагая, что частицы воздуха и пыли выбрасываемых потоков препятствуют их прохождению и вызывают удары и столкновения, распространяющиеся по воздуху во все стороны, постоянно порождая таким образом новые источники излучений. Именно этот факт привел Рентген в своем недавнем сообщении, которое уже упоминалось. Так по крайней мере я истолковывал его официальное заявление о том, что лучи исходят из облученного воздуха. Теперь остается проверить, способен ли воздух, тщательно очищенный от всех инородных частиц, вести себя как объект динамического удара и быть источником излучений, определить, зависит ли генерирование последних от присутствия в воздухе частиц, размеры которых можно определить. У меня есть основание считать, что так оно и есть.

Зная об этом явлении, мы теперь можем сформировать более полное представление о процессе генерирования излучений, открытых Ленардом и Рентгеном. Идею можно сформулировать, утверждая, что потоки мельчайших материальных частиц, отбрасываемых от электрода с огромной скоростью, наталкиваются на препятствия, где бы они ни были — внутри лампы, в воздухе или другой среде, или в самих чувствительных слоях, и дают начало излучению, или лучеиспусканию, которое обладает многими свойствами того, что нам известно как свет. Если этот физический процесс генерирования таких лучей будет бесспорно доказан как истинный, он будет иметь огромное практическое значение, так как побудит врачей критически пересмотреть многие явления, которые в настоящее время приписываются поперечным эфирным волнам, и, возможно, приведет к радикальному изменению существующих взглядов и теорий относительно этих явлений, если и не сути этих явлений, то по крайней мере способа их образования.

Мои усилия по поиску ответа на третий из перечисленных выше вопросов привели к установлению с помощью подлинных фотографий тесного родства между лучами Ленарда и Рентгена. Фотографии, имеющие отношение к этой теме, были представлены на заседании Нью-Йоркской академии наук (о котором уже упоминалось) в апреле 1897 года, но, к сожалению, краткость моего выступления и сосредоточенность на других вопросах привели к тому, что я упустил наиболее важное — описание способа получения этих фотографий. Эту оплошность я смог лишь отчасти исправить на следующий день. Воспользовавшись возможностью, я представил иллюстрации и рассказал об экспериментах, в которых была доказана отклоняемость рентгеновских лучей под воздействием магнита, что устанавливает еще более тесное родство, если не идентичность лучей, названных именами этих двух первооткрывателей. Однако подробное описание этих экспериментов, а также других исследований и полученных результатов в рамках темы, представленной мной тогда научному обществу, появится в более подробном сообщении, над которым я без спешки работаю.

Чтобы ясно представить значение рассматриваемых фотографий, я хочу напомнить, что в некоторых из своих предыдущих статей в адрес научных обществ я старался рассеять существовавшее до этого распространенное мнение, что явления, известные как феномены Крукса, и зависят от высокой степени разрежения, и указывают на нее. С этой целью я продемонстрировал, что свечение и большинство явлений в лампах Крукса могут быть получены при более высоком давлении газов в лампах с использованием значительно более высоких или более стремительных электродвижущих импульсов. Имея на вооружении этот полностью доказанный факт, я подготовил трубку, воспользовавшись методом Ленарда, описанным в его первом известном научном сообщении. Из трубки откачивался воздух до средней степени разрежения, и оказалось: когда трубка была подключена к обычной катушке высокого напряжения с низкой скоростью изменения тока, ни одного из двух типов излучений не было отмечено даже тогда, когда трубка была до такой степени напряжена, что сильно нагревалась за считанные мгновения. Тогда я предположил, что существенное увеличение скоростных характеристик импульсов, проходящих через лампу, могло бы вызвать излучения. Для проверки этой идеи я применил катушку неоднократно описанного мной типа, в которой первичный контур возбуждался под воздействием разрядов конденсатора. С таким устройством можно добиться любой желаемой частоты импульсов, в этом отношении практически не существует ограничений, так как энергия, аккумулированная в конденсаторе, является самой быстрой взрывообразной действующей силой из известных нам, и мы можем получить любой потенциал, или электрическое напряжение. Действительно, я убедился, что возрастание скоростных характеристик импульсов, проходящих через трубку, сопровождаемое, однако, не увеличением, а скорее уменьшением совокупной энергии, сообщаемой ей, привело к возникновению свечения и появлению лучей Ленарда, а затем, при дальнейшем форсировании выброса импульсов на достаточное расстояние рентгеновских лучей большой мощности, дало мне возможность получить фотографии, на которых видны тончайшие костные структуры. Тем не менее та же самая трубка, вновь подключенная к обычной катушке с низкой скоростью чередований тока в первичном контуре, практически не испускала лучей, даже когда через нее проходило гораздо больше энергии, о чем можно было судить по степени нагрева. Этот опыт, а также тот факт, что, используя огромные электрические напряжения, получаемые с помощью специально сконструированного для этой цели устройства, удалось получить отпечатки в атмосферном воздухе, убедили меня, что лучи Ленарда и рентгеновские лучи обязательно образуются во время разрядов молнии при обычном атмосферном давлении.

В настоящий момент, внимательно перечитывая написанное ранее, я понимаю, что мой научный интерес доминирует над практическим и что следующие заметки следует посвятить важнейшей цели этой статьи, а именно сообщению исходных данных для конструирования тем, кто занят производством трубок, и, возможно, практикующим врачам, которые заинтересованы в такой информации. Как бы то ни было, всё вышеизложенное не было напрасным и способствовало достижению цели, так как эксперименты показывают, насколько полученный результат зависит от соответствующей конструкции приборов, потому что с обычными устройствами бoльшая часть описанных выше результатов научных исследований не была бы получена.

Ил. 2. Усовершенствованная трубка Ленарда

Вы читаете Статьи
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×