большого труда построить такой генератор и получить при благоприятных атмосферных условиях интересные результаты.

Недавно д-р Р. Дж. Ван де Грааф в Массачусетском технологическом институте разработал замечательное устройство такого рода, в котором использованы обнаруженные в последнее время свойства и которое привлекает к себе исключительно большое внимание (см. «Scientific American» за 1934 год, февральский выпуск, с. 96). Оно названо революционизирующим изобретением, с помощью которого будут свершаться чудеса. Технические издания пишут о нем, как о колоссе, как о волшебном ключе, который, как полагают, откроет тайны природы. Вполне естественно, что одаренная богатым воображением пишущая братия построила воздушные замки на этом фундаменте. Дошло до того, что даже такое компетентное издание, как «New York Times», сообщает своим читателям о вероятном использовании этого генератора в передаче энергии на большие расстояния. Согласно простодушному сообщению в номере от 5 декабря 1933 года, «возможности поразительного генератора рассчитаны теоретически, и теперь осталось лишь применить их на практике». Каким бы утопическим этот проект ни представлялся, он не является абсолютно нереальным. Мудрый царь Македонии говорил: «Нет такой высокой стены, через которую мул, нагруженный золотом, не мог бы перепрыгнуть». Имея неограниченный капитал и не заботясь о выручке, можно осуществить и это.

В связи с многочисленными заметками и редакционными статьями, написанными в том же тоне, которые повергли в изумление непрофессионала и позабавили специалиста, было бы неплохо исследовать достоинства этого одиозного изобретения в свете полностью доказанных научных истин.

Ил. 1. Размещенный в авиационном ангаре генератор Ван де Граафа, по поводу которого доктор Тесла рассуждает в сопроводительной статье

Но сначала я хочу указать на явное несоответствие пояснительных описаний и фотографий, демонстрирующих работу аппарата, который, как видно из снимков, состоит из двух алюминиевых сфер диаметром 15 футов, укрепленных на изолированных колоннах шести футов в диаметре. Электричество подается в сферы с помощью бумажных конвейерных лент, заряженных от острия. Имея терминалы таких размеров, возможно получать гораздо большую разность потенциалов. Во множестве научных монографий предполагается, что поверхностная плотность заряда, т. е. количество электричества, накопленного на одном квадратном сантиметре сферического проводника, не может превышать восьми электростатических единиц, чтобы не допускать пробоя окружающего воздуха. В действительности же плотность можно увеличить до 20 единиц, прежде чем появятся расходующие энергию стримеры.

Если это так, то предельное напряжение сферы диаметром 15 футов должно составлять 16 964 700 вольт и, следовательно, разность потенциалов двух таких сфер, находящихся на весьма большом расстоянии одна от другой, составит 33 929 400 вольт. Однако следует, пожалуй, отметить, что, как показывают расчеты, такие большие сферы с расстоянием между центрами 55 футов будут в значительной степени воздействовать одна на другую, увеличивая собственную емкость. При таком расстоянии увеличение составит около 16 процентов, что следует учитывать, оценивая величину заряда.

Необходимая разность потенциалов может быть получена с гораздо меньшими сферами, что было бы, по-видимому, предпочтительно, так как они могли бы производить искровые разряды с большей частотой. Некоторые фотографии, сделанные при напряжении на терминале в 7 000 000 вольт, озадачивают, потому что поверхностная плотность в этом случае лишь немного превышала 4 электростатические единицы. Более того, видно, что разряды в изобилии проходят вдоль изоляционных опор. Это серьезная помеха, возникающая при работе с очень высокими напряжениями, но если внутренняя поверхность сферы профилирована должным образом, а сфера покоится на опоре, внутренняя часть которой хорошо подготовлена, то, кроме обеспечения достаточно большого бокового зазора, это предотвратит прохождение зарядов по колонне, и тогда можно не опасаться никаких новых проблем, даже при самых высоких напряжениях. Моя мачта в Лонг-Айленде, построенная в 1902 году, служила опорой для сферы, которая имела диаметр 67? фута и была смонтирована именно таким образом. Ее заряд мог доходить до 30 000 000 вольт благодаря несложному устройству, которое обеспечивало получение статического электричества и подачу мощности.

Большинство людей, и среди них немало электротехников, могут подумать, что очень длинные и шумные искровые разряды свидетельствуют о большой энергии, но это далеко не так. Впечатляющее представление такого рода, напряжением в несколько миллионов вольт, можно без труда продемонстрировать в сухую погоду, имея какую-либо широкую кожаную или тканевую конвейерную ленту. Единственное требование состоит в том, чтобы наружные поверхности емкостных элементов с высоким зарядом имели идеальную форму с малой кривизной. Но электрическая энергия на выходе ничтожна, и это относится ко всем предлагаемым электростатическим генераторам независимо от габаритов.

Не нужно быть экспертом, чтобы понять, что устройство такого рода не является источником электричества, подобно динамо-машине, а только приемником, или конденсатором, со свойствами накопителя. Вся его энергия получена от электричества, которое генерируется благодаря трению или обеспечивается с помощью острия и нагнетания в терминалы посредством конвейерной ленты. Если бы мачты были высотой с «Эмпайр-стейт-билдинг», а диаметр сфер составлял 500 футов, то исполинское сооружение не могло бы иметь больше энергии, чем ему передается с помощью наэлектризованной ленточной передачи, и сколько ни улучшай, этот тип неизбежно обречен на небольшую выходную мощность и низкий КПД ввиду имеющихся ограничений и неэкономичности процесса перемещения зарядов от источников к терминалам.

Ил. 2. Вид снизу изоляционной колонны генератора Ван де Граафа с непрерывной бумажной лентой

Поскольку авторы статей о колоссе ограничиваются тем, что превозносят его размеры, вольтаж и возможности, но не дают ни малейшего намека относительно его режима работы и энергетических характеристик, я попытаюсь восполнить недостаток информации. С этой целью допустим, что сферы размещены на расстоянии 55 футов между их центрами и разность их потенциалов составляет 10 000 000 вольт. Обычно электрическая емкость такой сферы равна радиусу, в данном случае 225 сантиметров, но, как разъяснялось выше, к этому следует добавить 16 процентов, и тогда она составит 261 сантиметр, что эквивалентно увеличению емкости до 0,00029 микрофарады. Следовательно, когда режим работы стабилизируется и каждая сфера будет иметь потенциал 5 000 000 вольт, количество электричества, аккумулированного в каждой сфере, составит 0,00145 кулона. Если бы это количество поступало ежесекундно, сила тока достигла бы 0,00145 ампера. Лампа накаливания в 25 ватт требует ток в 150 раз большей силы.

При расчете количества электричества, поступающего на каждый терминал в секунду, заслуживает внимания только распылитель [устройство для получения и передачи зарядов], поскольку он обеспечивает гораздо большую генерацию, чем можно было бы получить, используя силу трения конвейерных лент. Четкого описания применяемого устройства не приводится, но в рамках этого трактата достаточно знать, что он работает при напряжении 20 000 вольт и посредством множества острий питает энергией обе конвейерные ленты, о которых известно, что их ширина равна четырем футам, или 120 сантиметрам. Допустим, что они движутся со скоростью 100 футов, или 3 000 сантиметров в секунду, тогда площадь, охватываемая за этот промежуток времени, составит 120?3 000 = 360000 квадратных сантиметров. Если бы было возможно заряжать ленты равномерно, достигая на поверхности интенсивности, примерно равной той, что несет на себе наэлектризованная частица, то выходная мощность установки была бы весьма большой. Но осуществить это невозможно. Нижеследующие ориентировочные расчеты покажут, на что, более или менее, можно рассчитывать.

Искровые разряды, исходящие с острий, изучены всесторонне, и, в результате имеющихся данных и моих собственных наблюдений, я считаю, что сила тока напряжением 20 000 вольт, проходящего через каждое острие, будет равна примерно 0,0001655 ампера. Очень частое расположение острий не даст

Вы читаете Статьи
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×