'Science and engineering indicators', в 1998 году расходы только на эти исследования в США значительно превосходили расходы на оборону и космические исследования.
Поддерживая свою обороноспособность на очень высоком уровне и занимая первое место в мире по торговле оружием (от 40 до 50 млрд долларов ежегодно), США тратят колоссальные суммы на медико-биологические исследования не из карикатурных псевдогуманистических побуждений, о которых так любят говорить наши политические демагоги, а потому, что это чрезвычайно выгодно. Рынок вооружений создают несколько десятков стран, тогда как рынок лекарств и медицинских услуг создается всем шестимиллиардным населением Земли, а рынок биотехнологических препаратов и услуг, связанных с производством сельскохозяйственной продукции и продовольствия, столь же безграничен и имеет тенденцию к устойчивому росту. Так что не абстрактная любознательность ученых, а социально-экономическая выгодность определяет структуру современных научных исследований, и в силу этого наука и высокие технологии становятся самым рентабельным видом общественного производства. А вот и еще подтверждения этой мысли.
В США, самой мощной научной державе, на развитие науки в 1998 году было затрачено 220,6 млрд. долларов, из них 167 млрд. (то есть две трети) - за счет частного сектора. И значительная часть этих гигантских сумм ушла на медико-биологические и биотехнологические исследования. При этом важно учесть, что если в начале и даже в середине XX века академические исследования в основном финансировались за счет бюджета, то к концу столетия финансовые ресурсы корпоративного сектора стали превалирующим фактором развития американской, западноевропейской и японской науки, и прежде всего наук о жизни, о человеке.
Мои коллеги из Томского государственного университета, которые в 2000 году проводили совместно с Центром ИСТИНА и несколькими ведущими вузами России исследование состояния качества высшего образования в России, пришли к выводу, что в классических университетах России преобладает преподавание традиционных биологических дисциплин: ботаника, зоология, физиология человека и животных преподаются в 100% вузов, физиология растений - в 72%, такие специальности, как биохимия, генетика, микробиология, почвоведение, преподаются в 55%, экология - в 45% вузов. А, например, такие современные дисциплины, как биотехнология растений, физико-химическая биология, электронная микроскопия, - лишь в 9% вузов. Таким образом, по самым важным и перспективным направлениям наук о жизни студентов подготавливают менее чем в 10% классических университетов. Есть, конечно, исключения. Например, МГУ им. М.В.Ломоносова и особенно Пущинский государственный университет, работающий на базе академгородка, где готовят только магистров, аспирантов и докторантов и где соотношение учащихся и научных руководителей - примерно 1:1. Но эти исключения лишь подчеркивают, что студенты-биологи могут получить хорошее образование по меркам и стандартам середины XX века, но профессиональную подготовку, необходимую для развития науки и технологии в XXI столетии, они могут получить лишь в считанных вузах, да и то качество этой подготовки вызывает множество сомнений.
Так, например, для решения проблем генной инженерии, использования технологии трансгенов в животноводстве и растениеводстве, синтеза новых лекарственных препаратов нужны современные суперкомпьютеры. В США, Японии, странах Евросоюза суперкомпьютерами называются мощные ЭВМ производительностью не менее 1 терафлоп (1 трлн. операций/сек.). В Университете Сент-Льюиса, например, уже два года назад студенты имели доступ к суперкомпьютеру мощностью в 3,8 терафлоп. У нас же таких машин просто нет, а лучшие наши 'суперкомпьютерные' центры работают на ЭВМ несопоставимо меньшей мощности. Вадим Татур, директор фирмы 'Суперкомльютерные системы', радостно сообщил читателям одной из газет, что в 2001 году будут выпущены первые отечественные суперкомпьютеры производительностью 20 млрд. операций/сек. В его же статье приводятся данные, что в США к 2004 году собираются выпустить суперкомпьютер мощностью 100 терафлоп. Не стоило бы напоминать о нашей главной болячке - отставании в информационных технологиях, но это имеет прямое отношение к подготовке будущих интеллектуальных кадров России, в том числе и биологов, поскольку компьютерный синтез, например, молекул, генов, расшифровка генома человека, животных и растений могут дать и познавательный, и коммерческий эффект лишь на базе самых мощных вычислительных систем. Впрочем, я не склонен к безнадежному пессимизму. Совсем недавно мне довелось беседовать с академиком Геннадием Ивановичем Савиным, директором Межведомственного суперкомпьютерного центра РАН и Минпромнауки. Он сообщил, что уже летом этого года ученые, конструкторы и инженеры центра запустят первый отечественный 'терафлопник'. Как говорится, дай Бог. Но как скоро к нему будет открыт доступ студентам наших вузов, которые без этого не смогут получить полноценного современного образования? Да и требуется нам не один, а десятки 'терафлопников' еще большей мощности.
Наконец, еще один интересный факт. Томские исследователи провели социологический опрос преподавателей биологии и установили, что лишь 9% из них более или менее регулярно пользуются Интернетом, а при хроническом дефиците научной информации, получаемой в традиционной форме, невозможность и неумение пользоваться ресурсами Интернета означает только одно - нарастающее отставание в исследованиях и невозможность установить необходимые для этого международные связи. Из этого следует, что и студенты даже самых продвинутых биологических факультетов получают хорошую подготовку, но на уровне в лучшем случае 70-80-х годов, хотя в жизнь они вступят в XXI веке. Томские исследователи пришли к заключению, что лишь примерно 35 биологических НИИ РАН имеют более или менее современное оборудование, и поэтому только там возможны современные исследования, а участвовать в них могут лишь очень немногие студенты нескольких центральных университетов и учебного центра РАН, получающие подготовку на базе академических НИИ. Здесь нет ни оценок, ни жалоб, ни причитаний, просто пища для размышлений относительно того, какой научно-кадровый потенциал мы готовим.
В перечне высоких технологий, опубликованном ОЭСР, высокие технологии разбиты на высший, средний и низший уровень. Первое место среди технологий высшего уровня занимает авиакосмическая отрасль. Здесь задействовано все: компьютеры, современные системы управления, точное приборостроение, авиационные двигатели, ракетостроение и т.д. Хотя в этих отраслях Россия занимает достаточно прочные позиции, по разным причинам, прежде всего из-за нехватки финансовых ресурсов, отставание и здесь очень заметно. Касается оно и самых лучших авиационных вузов страны. Участвовавшие в наших исследованиях специалисты широко известного и престижного технологического университета МАИ указали несколько самых болезненных проблем, связанных с подготовкой элитных кадров для авиакосмической отрасли. Цитирую представленный в Минобразования отчет, подготовленный профессорами и учеными МАИ: 'Уровень подготовки преподавателей прикладных кафедр, не специализирующихся в области прикладной информатики (проектно-конструкторских, технологических, расчетных), в области современных информационных технологий, является достаточно низким, исключая отдельных энтузиастов, как правило, осваивавших их для выполнения НИРовских и иных работ вне учебного процесса. Это во многом объясняется отсутствием притока молодых преподавательских кадров в педагогические коллективы таких кафедр, а стареющий штатный преподавательский состав не в состоянии интенсивно осваивать на достаточном уровне постоянно совершенствующиеся программные продукты не только из-за заметных пробелов в компьютерной подготовке, но и из-за отсутствия в достаточном количестве современных технических средств, на которых могут быть установлены и эксплуатироваться современные программно-информационные комплексы, невозможности обеспечить преподавателям свободный доступ к таким системам и отсутствия материальных стимулов заниматься таким непростым делом, затрачивая на это очень много времени'.
Нужно ли говорить, что даже самые талантливые и хорошо подготовленные выпускники МАИ, которым посчастливится попасть в самые продвинутые КБ, создающие летательные аппараты гражданского и военного назначения или современные баллистические ракеты, должны 'доводиться до кондиции' на рабочем месте не один месяц, а может быть, не один год.
Кадровая составляющая нашего научно-технологического потенциала стареет - это факт. Но главное - не возраст. Главное - то, что потенциальные молодые специалисты за редким исключением не могут получить в наших вузах современную качественную подготовку. Часть из них (и притом лучшая) уйдет в коммерческую и финансовую деятельность, в гуманитарную сферу, в политику. Но те, кто все же останется в науке, должны получить исследовательскую подготовку на студенческой скамье и прежде всего в сфере фундаментальных и современных экспериментальных исследований. Первый генератор фундаментальных исследований в нашей стране - Российская академия наук, но во всех ее институтах, которые более или менее сносно оборудованы, работают около 90 тыс. сотрудников (вместе с обслуживающим персоналом), остальные - более 650 тыс., работают в различных НИИ и вузах. Следовательно, в вузах тоже должны проводиться фундаментальные исследования.
Здесь картина такова. По данным на 1999 год, в 317 вузах Минобразования РФ было выполнено около 5000 фундаментальных исследований (заметьте - фундаментальных!). Средние бюджетные затраты на одно фундаментальное исследование - 34214 руб. Если учесть, что сюда входит приобретение оборудования и исследуемых объектов, затраты на энергию, начисления на зарплату, накладные расходы и т.д., то на зарплату в лучшем случае остается от 30 до 40%. Если в фундаментальном исследовании участвуют хотя бы два-три научных сотрудника и преподавателя, то они могут рассчитывать в лучшем случае на 400-500-рублевую прибавку к заработной плате в месяц. За такую зарплату больших исследовательских результатов ожидать не следует. Впрочем, их и на самом деле нет. Да и хорошего оборудования на эти деньги не купишь. Что касается заинтересованности студентов в участии в таких исследованиях, то она скорее основана на энтузиазме, а не на материальном интересе, а энтузиастов в наши дни совсем не много. При этом стоит, пожалуй, отметить, что тематическое распределение вузовских исследований очень традиционно и весьма далеко от современности. Если, по данным на 1999 год, по физике в вузах Минобразования РФ их было проведено 561, то по биотехнологии - всего 8. И это, пожалуй, было бы понятно и оправданно в интервале 50-70-х годов, но никак не в конце 90-х. Кроме того, вынести из этих исследований что-либо полезное для формирования будущего научно-технологического потенциала страны вряд ли возможно, потому что настоящие фундаментальные исследования стоят миллионы, а то и десятки миллионов долларов, и с помощью проволочек, консервных банок и прочих самодельных приспособлений их уже давным-давно не делают. Разумеется, есть дополнительные источники финансирования. По данным на 1999 год, 56% затрат на научные исследования вузы осуществляли за счет хозрасчетных работ, но они, естественно, во-первых, не носят фундаментального характера, а во-вторых, не решают радикальным образом проблему формирования нового кадрового потенциала. Руководители наиболее продвинутых вузов страны, умеющие получать заказы от коммерческих клиентов или зарубежных фирм и понимающие важность 'свежей крови' в науке, начали в последние годы доплачивать наиболее перспективным аспирантам и докторантам, которых они хотят оставить для исследовательской и преподавательской работы у себя, закупать новое оборудование и т.д. Ректор одного из ведущих московских университетов рассказывал мне, что таким аспирантам они выделяют стипендию в размере доцентской зарплаты, но это возможно лишь благодаря мощным заказам нескольких зарубежных фирм. Но ведь такие возможности есть лишь у очень немногих университетов.
Думаю, что эти данные достаточно красноречивы и не нуждаются в комментариях. Я не уверен, что все согласятся с моими оценками, но, по моему глубокому убеждению, в действительности дело обстоит так: у нас нет четкого, ясного, обоснованного представления о состоянии нашего научно-технологического потенциала. Но даже те немногочисленные серьезные науковедческие исследования, которые сегодня проводятся на реальном российском материале, показывают, что нам необходимо не возрождать устаревшие традиции, не скорбеть о потерянном научном величии, потому что возродить прошлое еще никому никогда не удавалось, а заняться радикальной, быстрой и всесторонней модернизацией того, что есть, а еще важнее - приступить к целенаправленному и быстрому созданию принципиально нового научно-технологического потенциала России. Подробнее об этом - в следующих статьях.
Критика критических
В двух предыдущих номерах мы начали знакомить читателей с циклом статей известного науковеда, руководителя Центра ИСТИНА Анатолия Ракитова о состоянии и перспективах российского научно-технического потенциала. В этом выпуске - очередная, третья, серия.
Анатолий Ракитов
В наши дни кто только не говорит о постиндустриальных обществах, о новых цивилизациях, построенных на знаниях. И уж конечно, с этим связывают представления если не о земном рае, то, по крайней мере, об очень высоком благополучии. В общем, такое представление, пожалуй, правильно, хотя, разумеется, благополучие распространяется далеко не на всех. Те страны, в экономике которых современные технологии не являются решающим фактором развития, по уровню благополучия и благосостояния населения все больше отстают от обществ, создающих высокие технологии, производящих наукоемкие продукты. При этом очень немногие задают вопрос, почему именно знания лежат в основе таких обществ. Сказать, что знания стали товаром, что информация предельно рентабельна - значит лишь произнести расхожую фразу. Гораздо важнее понять, что мы живем в насквозь технологизированном мире. Экономические, социальные, политические и даже чисто моральные проблемы опираются на различные технологии, которые не нужно путать с техникой, машинами, бытовыми устройствами, транспортными средствами, средствами связи и т.д. Современные технологии - это тот центр тяжести, тот великий аккумулятор интеллектуальных продуктов и человеческой деятельности, благодаря которому достигается оборонное, политическое и экономическое могущество государства, благополучие населения, здоровье нации и экологическая безопасность.