way to talk about what was going on in my head as I first flipped through that book and then put it back?

At the time, I was reading books by many different writers on the brain, and in one of them I came across a chapter by the neurologist Roger Sperry, which not only was written with a special zest but also expressed a point of view that resonated strongly with my own intuitions. I would like to quote here a short passage from Sperry’s essay “Mind, Brain, and Humanist Values”, which I find particularly provocative.

In my own hypothetical brain model, conscious awareness does get representation as a very real causal agent and rates an important place in the causal sequence and chain of control in brain events, in which it appears as an active, operational force….

To put it very simply, it comes down to the issue of who pushes whom around in the population of causal forces that occupy the cranium. It is a matter, in other words, of straightening out the peck-order hierarchy among intracranial control agents. There exists within the cranium a whole world of diverse causal forces; what is more, there are forces within forces within forces, as in no other cubic half-foot of universe that we know….

To make a long story short, if one keeps climbing upward in the chain of command within the brain, one finds at the very top those over-all organizational forces and dynamic properties of the large patterns of cerebral excitation that are correlated with mental states or psychic activity…. Near the apex of this command system in the brain…. we find ideas.

Man over the chimpanzee has ideas and ideals. In the brain model proposed here, the causal potency of an idea, or an ideal, becomes just as real as that of a molecule, a cell, or a nerve impulse. Ideas cause ideas and help evolve new ideas. They interact with each other and with other mental forces in the same brain, in neighboring brains, and, thanks to global communication, in far distant, foreign brains. And they also interact with the external surroundings to produce in toto a burstwise advance in evolution that is far beyond anything to hit the evolutionary scene yet, including the emergence of the living cell.

Who Shoves Whom Around Inside the Cranium?

Yes, reader, I ask you: Who shoves whom around in the tangled megaganglion that is your brain, and who shoves whom around in “this teetering bulb of dread and dream” that is mine? (The marvelously evocative phrase in quotes, serving also as this chapter’s title, is taken from “The Floor” by American poet Russell Edson.)

Sperry’s pecking-order query puts its finger on what we need to know about ourselves — or, more pointedly, about our selves. What was really going on in that fine brain on that fine day when, allegedly, something calling itself “I” did something called “deciding”, after which a jointed appendage moved in a fluid fashion and a book found itself back where it had been just a few seconds before? Was there truly something referable-to as “I” that was “shoving around” various physical brain structures, resulting in the sending of certain carefully coordinated messages through nerve fibers and the consequent moving of shoulder, elbow, wrist, and fingers in a certain complex pattern that left the book upright in its original spot — or, contrariwise, were there merely myriads of microscopic physical processes (quantum-mechanical collisions involving electrons, photons, gluons, quarks, and so forth) taking place in that localized region of the spatiotemporal continuum that poet Edson dubbed a “teetering bulb”?

Do dreads and dreams, hopes and griefs, ideas and beliefs, interests and doubts, infatuations and envies, memories and ambitions, bouts of nostalgia and floods of empathy, flashes of guilt and sparks of genius, play any role in the world of physical objects? Do such pure abstractions have causal powers? Can they shove massive things around, or are they just impotent fictions? Can a blurry, intangible “I” dictate to concrete physical objects such as electrons or muscles (or for that matter, books) what to do?

Have religious beliefs caused any wars, or have all wars just been caused by the interactions of quintillions (to underestimate the truth absurdly) of infinitesimal particles according to the laws of physics? Does fire cause smoke? Do cars cause smog? Do drones cause boredom? Do jokes cause laughter? Do smiles cause swoons? Does love cause marriage? Or, in the end, are there just myriads of particles pushing each other around according to the laws of physics — leaving, in the end, no room for selves or souls, dreads or dreams, love or marriage, smiles or swoons, jokes or laughter, drones or boredom, cars or smog, or even smoke or fire?

Thermodynamics and Statistical Mechanics

I grew up with a physicist for a father, and to me it was natural to see physics as underlying every last thing that happened in the universe. Even as a very young boy, I knew from popular science books that chemical reactions were a consequence of the physics of interacting atoms, and when I became more sophisticated, I saw molecular biology as the result of the laws of physics acting on complex molecules. In short, I grew up seeing no room for “extra” forces in the world, over and above the four basic forces that physicists had identified (gravity, electromagnetism, and two types of nuclear force — strong and weak).

But how, as I grew older, did I reconcile that rock-solid belief with my additional convictions that evolution caused hearts to evolve, that religious dogmas have caused wars, that nostalgia inspired Chopin to write a certain etude, that intense professional jealousy has caused the writing of many a nasty book review, and so forth and so on? These easily graspable macroscopic causal forces seem radically different from the four ineffable forces of physics that I was sure caused every event in the universe.

The answer is simple: I conceived of these “macroscopic forces” as being merely ways of describing complex patterns engendered by basic physical forces, much as physicists came to realize that such macroscopic phenomena as friction, viscosity, translucency, pressure, and temperature could be understood as highly predictable regularities determined by the statistics of astronomical numbers of invisible microscopic constituents careening about in spacetime and colliding with each other, with everything dictated by only the four basic forces of physics.

I also realized that this kind of shift in levels of description yielded something very precious to living beings: comprehensibility. To describe a gas’s behavior by writing a gigantic piece of text having Avogadro’s number of equations in it (assuming such a herculean feat were possible) would not lead to anyone’s understanding of anything. But throwing away huge amounts of information and making a statistical summary could do a lot for comprehensibility. Just as I feel comfortable referring to “a pile of autumn leaves” without specifying the exact shape and orientation and color of each leaf, so I feel comfortable referring to a gas by specifying just its temperature, pressure, and volume, and nothing else.

All of this, to be sure, is very old hat to all physicists and to most philosophers as well, and can be summarized by the unoriginal maxim Thermodynamics is explained by statistical mechanics, but perhaps the idea becomes somewhat clearer when it is turned around, as follows: Statistical mechanics can be bypassed by talking at the level of thermodynamics.

Our existence as animals whose perception is limited to the world of everyday macroscopic objects forces us, quite obviously, to function without any reference to entities and processes at microscopic levels. No one really knew the slightest thing about atoms until only about a hundred years ago, and yet people got along perfectly well. Ferdinand Magellan circumnavigated the globe, William Shakespeare wrote some plays, J. S. Bach composed some cantatas, and Joan of Arc got herself burned at the stake, all for their own good (or bad) reasons, none of which, from their point of view, had the least thing to do with DNA, RNA, and proteins, or with carbon, oxygen, hydrogen, and nitrogen, or with photons, electrons, protons, and neutrons, let alone with quarks, gluons, W and Z bosons, gravitons, and Higgs particles.

Thinkodynamics and Statistical Mentalics

It thus comes as no news to anyone that different levels of description have different kinds of utility, depending on the purpose and the context, and I have accordingly summarized my view of this simple truth as it applies to the world of thinking and the brain: Thinkodynamics is explained by statistical mentalics, as well as its flipped-around version: Statistical mentalics can be bypassed by talking at the level of thinkodynamics.

What do I mean by these two terms, “thinkodynamics” and “statistical mentalics”? It is pretty straightforward. Thinkodynamics is analogous to thermodynamics; it involves large-scale structures and patterns in the brain, and makes no reference to microscopic events such as neural firings. Thinkodynamics is what

Вы читаете I Am a Strange Loop
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату