in the context of mathematics. That notion, claimed Russell, had to be parceled out into an infinite hierarchy of different
Blurriness Buries Berry
While I agree with Russell that something fishy is going on in Berry’s paradox, I don’t agree about what it is. The weakness that I focus in on is the fact that English is a hopelessly imprecise medium for expressing mathematical statements; its words and phrases are far too vague. What may seem precise at first turns out to be fraught with ambiguity. For example, the expression “nine cubed plus forty-eight, all times ten cubed plus one”, which earlier I exhibited as a description of 777,777, is in fact ambiguous — it might, for instance, be interpreted as meaning 777 times 1000, with 1 tacked on at the end, resulting in 777,001.
But that little ambiguity is just the tip of the iceberg. The truth of the matter is that it is far from clear what kinds of English expressions count as descriptions of a number. Consider the following phrases, which purport to be descriptions of specific integers:
• the number of distinct languages ever spoken on earth
• the number of heavenly bodies in the Solar System
• the number of distinct four-by-four magic squares
• the number of interesting integers less than 100
What is wrong with them? Well, they all involve ill-defined notions.
What, for instance, is meant by a “language”? Is sign language a language? Is it “spoken”? Is there a sharp cutoff between languages and dialects? How many “distinct languages” lay along the pathway from Latin to Italian? How many “distinct languages” were spoken en route from Neanderthal days to Latin? Is Church Latin a language? And Pig Latin? Even if we had videotapes of every last human utterance on earth for the past million years, the idea of objectively assigning each one to some particular “official” language, then cleanly teasing apart all the “truly distinct” languages, and finally counting them would
Moving on, what counts as a “heavenly body”? Do we count artificial satellites? And random pieces of flotsam and jetsam left floating out there by astronauts? Do we count every single asteroid? Every single distinct stone floating in Saturn’s rings? What about specks of dust? What about isolated atoms floating in the void? Where does the Solar System stop? And so on,
You might object, “But those aren’t mathematical notions! Berry’s idea was to use
What about the blurry notion of “interesting numbers”? Could we give some kind of mathematical precision to that? As you saw above, reasons for calling a number “interesting” could involve geometry and other areas of mathematics — but once again, where do the borders of mathematics lie? Is game theory part of mathematics? What about medical statistics? What about the theory of twisting tendrils of plants? And on and on.
To sum up, the notion of an “English-language definition of an integer” turns out to be a hopeless morass, and so Berry’s twisty notion of
Although in this brief digression I’ve made it sound as if the idea Berry had in 1904 was naive, I must point out that some six decades later, the young mathematician Greg Chaitin, inspired by Berry’s idea, dreamt up a more precise cousin using computer programs instead of English-language descriptions, and this clever shift turned out to yield a radically new proof of, and perspective on, Godel’s 1931 theorem. From there, Chaitin and others went on to develop an important new branch of mathematics known as “algorithmic information theory”. To go into that would carry us far afield, but I hope to have conveyed a sense for the richness of Berry’s insight, for this was the breeding ground for Godel’s revolutionary ideas.
A Peanut-butter and Barberry Sandwich
Bertrand Russell’s attempt to bar Berry’s paradoxical construction by instituting a formalism that banned all self-referring linguistic expressions and self-containing sets was not only too hasty but quite off base. How so? Well, a friend of mine recently told me of a Russell-like ban instituted by a friend of hers, a young and idealistic mother. This woman, in a well-meaning gesture, had strictly banned all toy guns from her household. The ban worked for a while, until one day when she fixed her kindergarten-age son a peanut-butter sandwich. The lad quickly chewed it into the shape of a pistol, then lifted it up, pointed it at her, and shouted, “Bang bang! You’re dead, Mommy!” This ironic anecdote illustrates an important lesson: the medium that remains after all your rigid bans may well turn out to be flexible enough to fashion precisely the items you’ve banned.
And indeed, Russell’s dismissal of Berry had little effect, for more and more paradoxes were being invented (or unearthed) in those intellectually tumultuous days at the turn of the twentieth century. It was in the air that truly peculiar things could happen when modern cousins of various ancient paradoxes cropped up inside the rigorously logical world of numbers, a world in which nothing of the sort had ever been seen before, a pristine paradise in which no one had dreamt paradox might arise.
Although these new kinds of paradoxes felt like attacks on the beautiful, sacred world of reasoning and numbers (or rather,
An Autobiographical Snippet
As I mentioned in Chapter 4, at age fourteen I ran across Ernest Nagel and James R. Newman’s little gem,
Part of what pulled me so intensely was the weird loopiness at the core of Godel’s work. But the other half of