true, then Y is also true”), then you can toss Y into the bin of proven results. There were a few other fundamental rules of inference, but it was agreed that not very many were needed. About a decade into the twentieth century, Bertrand Russell and Alfred North Whitehead codified these rules in a uniform if rather prickly notation (see facing page), thus apparently allowing all the different branches of mathematics to be folded in with logic, making a seamless, perfect unity.
Thanks to Russell and Whitehead’s grand work,
CHAPTER 10
Godel Encounters Fibonacci
BY HIS early twenties, the boy from Brunn was already a superb mathematician and, like all mathematicians, he knew whole numbers come in limitless varieties. Aside from squares, cubes, primes, powers of ten, sums of two squares, and all the other usual suspects, he was familiar with many other types of integers. Most crucially for his future, young Kurt knew, thanks to Leonardo di Pisa (more often known as “Fibonacci”), that one could define classes of integers
In the 1300’s, Fibonacci had concocted and explored what are now known as the “Fibonacci numbers”:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . .
In this rapidly growing infinite sequence, whose members I will henceforth refer to as the
This almost-but-not-quite-circular fashion of defining a sequence of numbers in terms of itself is called a “recursive definition”. This means there is some kind of precise calculational rule for making new elements out of previous ones. The rule might involve adding, multiplying, dividing, whatever — as long as it’s well-defined. The opening gambit of a recursive sequence (in this case, the numbers 1 and 2) can be thought of as a
The Caspian Gemstones: An Allegory
Leonardo di Pisa’s sequence is brimming with amazing patterns, but unfortunately going into that would throw us far off course. Still, I cannot resist mentioning that 144 jumps out in this list of the first few
Several decades ago, people started wondering if the presence of 8 and 144 in the
To cast allegorical light on this, imagine someone chanced one day to fish up a giant diamond, a magnificent ruby, and a tiny pearl at the bottom of the great green Caspian Sea in central Asia, and other seekers of fortune, spurred on by these stunning finds, then started madly dredging the bottom of the world’s largest lake to seek more diamonds, rubies, pearls, emeralds, topazes, etc., but none was found, no matter how much dredging was done. One would naturally wonder if more gems might be hidden down there, but how could one ever know? (Caveat: my allegory is slightly flawed, because we can imagine, at least in principle, a richly financed scientific team someday dredging the lake’s bottom completely, since, though huge, it is finite. For my analogy to be “perfect”, we would have to conceive of the Caspian Sea as infinite. Just stretch your imagination a bit, reader!)
Now the twist. Suppose some mathematically-minded geologist set out to
This is typical of how we think about the physical world — we think of it as being filled with contingent events, facts that could be otherwise, situations that have no fundamental reason for their being as they are. But let me remind you that mathematicians see their pristine, abstract world as the antithesis to the random, accident- filled physical world we all inhabit. Things that happen in the mathematical world strike mathematicians as happening, without any exceptions, for statable, understandable
This — the Mathematician’s Credo — is the mindset that you have to adopt and embrace if you wish to understand how mathematicians think. And in this particular case, the mystery of the lack of Fibonacci powers, although just a tiny one in most mathematicians’ eyes, was a particularly baffling one, because it seemed to offer no natural route of access. The two phenomena involved — integer powers with arbitrarily large exponents, on the one hand, and Fibonacci numbers on the other — simply seemed (like gemstones and the Caspian Sea) to be too conceptually remote from each other to have any deep, systematic, inevitable interrelationship.
And then along came a vast team of mathematicians who had set their collective bead on the “big game” of Fermat’s Last Theorem (the notorious claim, originally made by Pierre de Fermat in the middle of the seventeenth century, that no positive integers
In the wake of this team’s revolutionary work, new paths were opened up that seemed to leave cracks in many famous old doors, including the tightly-closed door of the small but alluring Fibonacci power mystery. And indeed, roughly ten years after the proof of Fermat’s Last Theorem, a trio of mathematicians, exploiting the techniques of Wiles and others, were able to pinpoint the exact