Описанным методом была определена угловая скорость вращения ядер галактик, а также период полного оборота для них. Оказалось, что наименьший период оборота (2,8 миллиона лет) у ядра галактики NGC 411. Это спиральная галактика типа SO. У спиральной галактики NGC 2683 период оборота равен 6,4 миллиона лет. Эта галактика относится к типу Sc. У галактики NGC 3115 типа Е7 период обращения 8,8 миллиона лет. Медленнее всего вращаются ядра галактик NGC 7640 типа SBc и NGC 4559 типа Sc. Периоды их вращения превышают 400 миллионов лет.

Если ядро галактики вращается, то оно должно сжиматься. Чем больше скорость вращения, тем больше сжатие. Чем меньше плотность, тем больше сжатие. Сжатие можно измерить путем наблюдений. Скорость вращения также можно определить описанным выше методом. Зная эти две величины, можно вычислить плотность вращающегося центра галактики. Такие вычисления показывают, что в ядрах галактик плотность вещества в сотни и тысячи раз больше, чем плотность вещества в окрестностях Солнца (то есть на периферии Галактики). Все это относится и к нашей Галактике. Описанным методом можно определить скорость вращения только ядра галактики, потому что ядро яркое. В других местах галактики яркости для таких измерений недостаточно. Но специалисты нашли другой метод определения скорости вращения вещества галактики за пределами ее ядра. В спиральных галактиках есть яркие сгустки. Это те места, где находятся звезды — горячие гиганты и сверхгиганты, а также облака водорода. На больших телескопах можно получать отдельные спектры этих сгустков. Затем, измеряя положение спектральных линий, можно вычислить лучевую скорость. Если в одной галактике измерить скорости нескольких таких ярких сгустков, то можно определить скорости движения вещества вдоль луча зрения.

Примером может служить определение лучевых скоростей в галактике NGC 5055. Результаты показаны на рисунке 50. Слева — галактика, а справа график скоростей вещества в галактике. Подчеркнем, что вращение галактики характеризуется разностью между лучевыми скоростями сгустков и лучевой скоростью ядра галактики. На графике видно, что по одну сторону от центра все разности лучевых скоростей положительны (это означает движение от нас), а по другую сторону от центра отрицательны (движение к нам). На графике, кроме того, видно, что ядро галактики вращается как твердое тело (кривая скоростей около центра близка к прямой). Другими словами, линейная скорость вращения прямо пропорциональна расстоянию от центра галактики. Угловая скорость постоянна. За пределами ядра линейные скорости продолжают увеличиваться, однако не так быстро, как получалось бы по прямой. Таким образом, угловая скорость вращения убывает по мере увеличения расстояния от центра галактики. На

Рис. 50. Кривая скоростей галактики NGC 5055

некотором удалении от центра уже и линейная скорость уменьшается, стремясь постепенно к нулю.

Астрономы спорят о, казалось бы, очевидных вещах — в каком направлении вращаются спиральные галактики. Одни считают, что галактики закручиваются, то есть волочат за собой спиральные ветви. Если бы спиральная галактика NGC 4303 вращалась по часовой стрелке, то можно было бы говорить о закручивании спиральной галактики. Эта галактика показана на рисунке 51. Другие астрономы считают, что спиральные галактики вращаются в обратную сторону, то есть раскручиваясь. При этом галактики вращаются концами спиральных ветвей вперед. Если так, то галактика на рисунке 51 вращалась бы против часовой стрелки.

Наблюдая галактику с торца (в плане), судить о поперечных к лучу зрения движениях нельзя, поскольку скорости этого направления мы измерить не можем в принципе. Если мы наблюдаем спиральные галактики с ребра, то вращение галактики определяется уверенно, но тогда не просматриваются спиральные ветви.

Больше информации о спиральных галактиках можно получить, если их наблюдать и не с торца, и не с ребра, а где-нибудь в три четверти. Это значит, что угол наклона главной плоскости к лучу зрения находится в диапазоне 15° — 60°. В этом промежуточном случае можно и спиральные ветви разглядеть, и измерить лучевые скорости, которые вызваны вращением. Но и в этом случае нельзя уверенно ответить на вопрос, в какую сторону вращается галактика. Поясним это на примере галактики, которая показана на рисунке 50. У нее хорошо промерены лучевые скорости. Их величины свидетельствуют о том, что из-за вращения правая часть этой

Рис. 51. Галактика NGC 4303 типа Sc

галактики от нас удаляется. В то же время левая часть галактики приближается к нам. Достаточно ли этих данных для того, чтобы определить, в какую сторону вращается галактика? Для того чтобы определить, как вращается галактика — концами ветвей вперед или назад, надо еще знать, какая часть галактики ближе к нам — верхняя или нижняя. Если верхняя часть ближе к нам, то эта галактика вращается концами ветвей вперед. Но если ближе к нам нижняя часть, то галактика вращается концами ветвей назад. Тут

и зарыта собака, ведь очень трудно установить, какая часть галактики к нам ближе, а какая дальше. В некоторой мере помогает темное вещество. По нему ученые определяют, какая часть галактики к нам ближе, а какая дальше. Значит, надо: 1) определить расположение спиральных ветвей в галактике,2) выяснить по расположению темного вещества, какая из сторон галактики к нам ближе, и 3) определить, какая часть галактики приближается к нам в результате вращения. Это делается по наклону спектральных линий. Вроде все ясно и логично. Но очень сложно. Дело в том, что если хорошо определяются спиральные ветви, то практически невозможно определить по темному веществу, какая из сторон галактики к нам ближе. Просто темное вещество при таком угле зрения плохо видно. На рисунке 52 показана галактика NGC 7331. Судя по расположению темного вещества, нижняя часть эллипса ближе к нам, а верхняя часть

Рис. 52. Галактика NGC 7331, позволяющая определить, что спиральные галактики закручиваются

галактики дальше от нас. На фотографии спирали направлены против вращения часовой стрелки. Это определяется по спиральным ветвям, в частности по концам в правой и левой части. Измерения с помощью спектрографа показывают, что правая часть галактики из-за вращения приближается к нам, а левая часть удаляется от нас. Эту галактику очень удобно наблюдать с Земли, поэтому вопрос о направлении вращения галактики решается однозначно: галактика вращается концами ветвей назад.

МАССЫ ГАЛАКТИК

Определив, как вращаются галактики, можно рассчитать их массы. Существует закон: в каждой точке галактики центробежная сила, которая обусловлена вращением, равна центростремительной силе, которая связана с притяжением к центру галактики. Но сила притяжения зависит от распределения масс в галактике. Поэтому, если мы имеем кривую лучевых скоростей, то по ней можем определить, как изменяется плотность вещества в галактике. При этом можно оценить общую массу галактики.

Однако не для всех галактик можно построить кривую скоростей. Не удается это сделать для медленно вращающихся галактик — эллиптических и карликовых галактик I II. Эти галактики заселены звездными объектами II типа. Поэтому в них нет горячих гигантов, гигантов и сверхгигантов. В них нет и ярких сгустков водорода. Другими словами, в этих галактиках нет достаточно ярких источников света, чтобы можно было измерить лучевые скорости. Специалисты в этом случае применяют другой метод, хотя и менее точный. Он применим для тех галактик, которые вращаются медленно или вовсе не вращаются. В таких галактиках звезды движутся в одинаковой степени по всем направлениям.

Если галактика не вращается, то среднюю скорость звезд в ней можно определить спектральным методом. Чем больше расширение спектральных линий, тем больше средняя лучевая скорость излучающих звезд.

Масса невращающейся галактики, ее объем и средняя скорость движущихся в ней по всем

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×