также иодиды, перхлораты, нитраты, тиоцианаты, цианиды и нитриты. Нерастворимы фториды, большинство хлоридов (включая поваренную соль NaCl), карбонаты, оксалаты, сульфаты, сульфиды, гидроокиси и окислы.
Имеется растворитель, который является чем-то средним между водой и аммиаком (в смысле свойств). Это гид-роксиламин NH2OH. Он диссоциирует (распадается) на ионы H+ и NHOH—. Плавится он при температуре +33 °C, а кипит при +58 °C. Но это при давлении 22 мм рт. ст. В этих условиях вода кипит при температуре около +24 °C. Значит, температурные пределы жидкой фазы гидроксиламина шире, чем у воды. Он может действовать как водоподобный биологический растворитель в тех условиях, где и вода, и аммиак примерно одинаково распространены. Это при температурах на 30 °C выше верхнего предела существования жидкой воды. На ранних этапах эволюции атмосферы Земли такие условия могли быть.
Но вернемся к аммиаку. Он обладает меньшим диполь-ным моментом, чем вода. Поэтому для соединений, которые сильно поляризованы, он является менее эффективным растворителем, чем вода. Зато для неполярных веществ, а к ним принадлежит большинство органических соединений, он является лучшим растворителем, чем вода. У аммиака наиболее резко выражены свойства основания. Поэтому он особенно эффективен при растворении кислых веществ. Итак, аммиак является растворителем, который в высшей степени пригоден для роли жидкой основы жизни.
Молекулярные цепочки могут образовываться с помощью углерода. Частично он может быть заменен азотом. В земных условиях озонные цепочки обычно коротки и неустойчивы. Однако в некоторых азотоводородных производных может присутствовать подряд до восьми связанных атомов азота. При низких температурах, когда аммиак находится в состоянии жидкости, устойчивость таких структур сильно возрастает. Происходит частичное замещение углерода азотом. Это имеет место в таких органических циклических соединениях, как пурины. А пурины являются жизненно важными соответствующими наших нуклеиновых кислот.
На известных нам планетах аммиак обнаружен вместе с метаном и другими углеводородами. Это в условиях низких температур, когда вода замерзает. Конечно, часть воды сохраняется растворенной в жидком аммиаке. Эта смесь, в которой органические соединения образуются самопроизвольно под действием коротковолнового излучения, радиоактивности и электрических разрядов.
Надо подчеркнуть, что в условиях низких температур не обязательно должна происходить частичная или полная замена углерода другими цепочкообразными элементами. Другое дело, при температурах выше точки кипения воды. Здесь замена углерода может оказаться неизбежной, поскольку многие органические соединения (белки, углероды и их производные) не могут противостоять высоким температурам. Подыскивая замену углероду, необходимо обращать внимание на такие неметаллы, которые образуют летучие водородные соединения. Мы имеем в этом плане весьма ограниченные возможности. Это бор В в III группе, кремний Si и, возможно, германий Ge в IV группе, азот N и фосфор P в V группе. Сюда с некоторой натяжкой можно добавить серу S в VI группе таблицы Менделеева.
Но против бора работают два обстоятельства. Во-первых, его малая распространенность. Так, в земной коре его всего три десятитысячных процента. Дело в том, что под действием космических лучей (заряженных частиц) ядра бора преобразуются в ядра других элементов. Правда, на других планетах в иных условиях бора может быть больше, чем на Земле. Второй аргумент против бора состоит в естественном сродстве бора с азотом и с аммиаком как растворителем. В этом плане бор лучше соответствует органической схеме, приспособленной к условиям умеренно низких температур.
Кремний как заменитель углерода этих изъянов не имеет. Кремний является неметаллом. Он находится в одной группе (IV) с углеродом, кремнием и германием. Все, кроме кремния, являются металлами. В эту группу, естественно, входит и водород. У всех элементов этой группы на валентной оболочке имеется четыре свободных места. Значит, их максимальная валентность и характеристическая ковалент-ность равны четырем. Это и определяет их химические свойства. Все указанные элементы образуют ряды водородных соединений.
Установлено, что кремневодороды имеют несколько более высокие точки плавления и кипения, чем углеводороды. Но температуры их разложения меньше. Это соответствует меньшим энергиям связей. Несмотря на это они достаточно теплостойки для любой вероятной схемы жизни. При соприкосновении с воздухом или кислородом они самовозгораются. Кроме того, они энергично реагируют с водой в присутствии катализаторов-щелочей. При этом образуются силикаты и высвобождается водород. Чистая вода не действует на кремневодороды в силикатных сосудах. Эта реакция протекает только в сосудах из стекла, поскольку оно содержит щелочные металлы.
В земных условиях кремневодороды, как и углеводороды, существовать не могут. Так, болотный газ, основную часть которого составляет метан, самовозгорается в воздухе. Тем не менее углеводороды являются основными элементами молекулярных цепочек в земной схеме жизни. Важно помнить, что органические соединения строятся не из углеводородов, а из продуктов фотосинтеза. Сами же углеводороды появляются в существующей органической схеме позднее как продукты распада органических веществ.
Имеются кремниевые кислоты органического типа. Достаточно подставить аминогруппу на место начального атома водорода, чтобы превратить их в аминокислоты. Из них могут быть построены кремнебелки через кремниевые аналоги пептидных связей. В этом процессе возникнут более прочные связи, поскольку сродство кремния и кислорода больше.
Но есть одно принципиальное отличие кремния от углерода. Кремний предпочитает соединяться с кислородом. Поэтому он не дает аналогов циклических углеводородов, поскольку образует цепочки — Si — O — Si —. Это можно сделать путем замены кислорода на серу. Она относится также к VI группе таблицы Менделеева. Достаточно давно были получены кремниевые полимеры с азотом, который заменяет кислород. При этом азот служит донором электрона. Полагают, что азот может быть заменен фосфором. Но здесь не все еще изучено.
Если водорода на какой-либо планете мало, его можно заменить галогеном. Существуют длинные цепочки из кремния и хлора, которые подобны кремневодородам. Эти соединения могут быть основой для построения сложной химической системы. Можно утверждать, что кремний вполне может заменить углерод и быть цепочкообразующим элементом органической системы. При этом вместо чисто кремниевых цепочек крупные лабильные молекулы вполне могут быть основаны на связях Si — O — Si или Si — N — Si. При высоких температурах жизнь не требует полного исключения углерода из органических структур. Углерод может присутствовать вместе с кремнием и германием. Собственно, известны некоторые углеродные соединения, в которых присутствует кремний. Таким образом, при высоких температурах может существовать жизнь, основанная на кремнии, сере и фосфоре вместо азота. Условия для этого могут быть на планете малой массы. Такие планеты должны находиться близко к своему солнцу. В нашей планетной системе это Меркурий.
Если температура на планете достигает 300 °C, то в ее атмосфере не могут задерживаться легкие элементы. Они улетучиваются в космос. Тут важны два фактора — температура и сила тяжести.
Условия на планетах во Вселенной могут быть самыми различными. Поэтому специалисты не исключают, что «кремниевая жизнь» возможна при высоких давлениях и температурах свыше 1000 °C. В этих условиях кремниевые соединения станут лабильными. Вообще-то специалисты проработали вопросы существования жизни во Вселенной — на планетах, где условия очень сильно различаются: при изменении температуры от нескольких градусов выше абсолютного нуля (— 273,15 °C) до точки кипения свинца. Рассматривались даже более высокие температуры.
ЧАСТЬ ВТОРАЯ
ВСЕЛЕННАЯ
РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ
Около 15 миллиардов лет тому назад произошел Большой Взрыв, охвативший существовавшее в то