Энергия звезды, благодаря которой поддерживается высокая температура в ее недрах, черпается из термоядерного синтеза. В этих термоядерных реакциях четыре протона путем разных преобразований соединяются так, что образуют ядро гелия (альфа-частицу, состоящую из двух протонов и двух нейтронов). При превращении одних частиц в другие часть массы превращается в энергию. Можно рассчитать, какое количество энергии должно выделиться в реакциях образования альфа-частиц из протонов. Это можно сделать так. Масса одного протона равна 1,008 атомной единицы. Масса альфа-частицы равна 4,0039 атомной единицы. При превращении четырех протонов в одну альфа-частицу «исчезает» масса величиной 0,007 атомной единицы. Точнее, она не исчезает, а превращается в энергию, ядерную энергию. Можно оценить запасы ядерной энергии звезды.

Эволюция звезды определяется, главным образом, ее массой. Естественно, чем больше масса звезды, тем больше энергия, которая может выделиться внутри звезды в процессе термоядерных реакций. Другими словами, тем больше горючего содержится внутри такой звезды. Казалось бы, такая звезда должна жить (светиться) дольше. Но это не так. Чем массивнее звезда, тем больше она излучает энергии в космическое пространство. Так, если массу звезды увеличить в три раза, то ее расход энергии на излучение (светимость) увеличится в девять раз! Поэтому с увеличением массы звезды продолжительность ее жизни резко уменьшается. Так. например, горючего для ядерного реактора внутри Солнца хватит еще на десятки миллиардов лет. Около пяти миллиардов лет это горючее уже расходуется. Но, если масса звезды в 50 раз превышает массу Солнца, то ее горючего хватит всего на несколько миллионов лет!

Когда в процессе термоядерных реакций в ядре звезды израсходуется весь водород (он превращается в гелий), то термоядерные реакции превращения водорода в гелий начинают идти в слое вокруг ядра. Светимость звезды на этом этапе увеличивается. Звезда как будто разбухает. Но температура поверхностных слоев звезды уменьшается, поскольку размеры ее увеличились, поэтому она начинает светиться не голубым, а красным цветом. Такую звезду называют красным гигантом. Дальше звезда эволюционирует следующим образом. Поскольку в ядре не идут термоядерные реакции и не выделяетса тепло, она постепенно сжимается под действием сил гравитации. В результате сжатия ядра увеличивается его температура. Она достигает 100–150 миллионов градусов. При столь высокой температуре гелий становится источником тепла: идут термоядерные реакции, в результате которых ядра гелия превращаются в ядра углерода. Давление внутри ядра звезды увеличивается, поэтому сжатие прекращается. Светимость звезды на этом этапе увеличивается, так как в нее вносит вклад и выделение энергии из ядра. В результате увеличивается и поверхностная температура звезды. Но когда-то кончается и гелий. Причем значительно быстрее, чем кончился водород. Когда это происходит, звезда теряет свои наружные слои. Они расширяются и отделяются от ядра звезды. Эти слои впоследствии наблюдаются как планетарная туманность. Судьба ядра звезды после этого зависит от ее массы. Если масса звезды меньше 1,2 массы Солнца, то вещество звезды под действием гравитационного сжатия уплотняется таким образом, что его плотность достигает 10 тысяч тонн в кубическом сантиметре. При такой огромной плотности атомы разрушаются. После этого сжатие звезды прекращается, так как ему начинает противодействовать сила упругости образованного очень плотного газа. Образованная таким путем звезда (ее называют «мертвой») является белым карликом. Таким образом, до того, как звезда превратится в белого карлика, она на некоторое время становится красным гигантом. Затем белый карлик в течение нескольких миллиардов лет остывает и превращается в черного карлика, то есть тело не излучающее а поэтому и невидимое. И.С. Шкловский назвал его «трупом» звезды. Если масса первоначальной зашлакованной звезды превышает критическую величину в 1,2 массы Солнца, то силы упругости сверхплотного (вырожденного) газа не в состоянии справиться с силами гравитационного сжатия.

Если масса звезды не превышает 10 масс Солнца (но больше 1,2 массы Солнца), то события развиваются следующим образом. Чрезмерное сжатие звезды приводит к сильному увеличению ее температуры. Когда температура превысит пять миллиардов градусов, начинают играть важную роль реакции, в результате которых образуется нейтрино. Поскольку нейтрино не обладает зарядом и массой покоя, оно практически беспрепятственно проникает через любые вещества, в том числе и через вещество звезды. Энергия, которую создает внутри звезды сильное гравитационное сжатие, этими частицами выносится наружу. Они выносят больше энергии, нежели ее расходует звезда на свое свечение в видимом диапазоне. Так как энергия изнутри звезды выносится наружу нейтрино, то звезда получает возможность сжиматься быстрее. Сжатие удваивается каждую секунду. Остановить это сжатие уже нельзя. Но когда огромная звезда ужимается до размеров сферы с радиусом в 10 километровм и плотность вещества звезды достигает миллиарда тонн в кубическом сантиметре, вступают в игру новые силы, возникающие при деформации атомных ядер. Ядра распадаются на протоны и нейтроны. Но протоны, захватив на каждый протон по одному электрону, превращаются в нейтроны (при этой реакции также выделяется нейтрино). С этого времени вещество звезды состоит преимущественно из нейтронов. Остальные элементарные частицы представляют собой просто примеси в пренебрежимо малых количествах. Для этого процесса введен термин: нейтронизация вещества звезды. При этом образуется нейтронное вещество со свойствами несжимаемой жидкости. Плотность его равна плотности вещества внутри атомного ядра. Но нейтроны сцеплены между собой не ядерными силами (как внутри ядра), а силами гравитации. Поскольку образованная таким путем нейтронная жидкость является несжимаемой, то дальнейшее сжатие звезды прекращается. Силы гравитационного сжатия уравновешиваются силами упругости нейтронной жидкости. Это успешно происходит в том случае, если масса звезды не превышает вдвое массу Солнца. В том случае, если масса звезды превышает двойную массу Солнца, звезда может остановить свое сжатие только в том случае, если она каким-либо образом сбросит с себя лишнюю массу в форме взрыва.

Взрыв происходит в образовавшемся ядре звезды, поскольку оно является неустойчивым. При взрыве выделяется энергия и образуется ударная волна, которая, распространяясь наружу, выбрасывает из звезды наружные слои. Они отделяются от звезды и образуют газовое облако, которое по инерции продолжает быстро расширяться. Оптическая яркость звезды после взрыва увеличивается в миллион раз. Это настолько заметное явление на небе, что его можно наблюдать даже невооруженным глазом. Это явление было названо вспышкой Сверхновой звезды. Имеются и новые звезды, яркость которых значительно меньше. Физическая природа новых звезд иная. Какова судьба звезды, масса которой больше 10 масс Солнца?

Если звезда, масса которой в 10 раз превышает массу Солнца, начнет очень быстро сжиматься (то есть коллапси-ровать), то это сжатие остановить уже нечем. При меньших массах выход был найден в том, что звезда жертвовала своим атомным строением — атомы были сломаны, и в результате высвобождались силы, которые остановили сжатие звезды. При этом образовался белый карлик. Во втором случае были сломлены и сами ядра. Сжатие было остановлено силами упругости несжимаемой (нейтронной) жидкости. При этом образовалась нейтронная звезда. В случае очень массивной звезды ломать уже нечего, и более мощных сил, чем сила сжатия, нет. Поэтому сжатие (коллапс) звезды будет продолжайся неограниченно. Оно остановится только с образованием нового объекта, названного черной дырой. Радиус черной дыры равен всего 1–3 километрам.

Образование звезд во всем протогалактическом облаке происходило до тех пор, пока там имелись необходимые для этого условия, то есть пока плотность вещества не упала ниже критического уровня. На определенном этапе были образованы звезды с различными массами. Дальше происходила эволюция этих звезд. С тех пор прошло примерно 12 миллиардов лет, и эволюционировавшие звезды остались светить до сих пор. Значительная часть первоначально образованных звезд в процессе своей эволюции прошла стадию Сверхновых звезд, то есть на том этапе, когда они израсходовали свое «горючее» и их вещество стало состоять в значительной мере из тяжелых химических элементов, они взрывались. При этом значительную часть вещества они сбрасывали в межзвездное пространство. Так, вещество облака, которое первоначально состояло из самого легкого химического элемента — водорода, после взрыва Сверхновых стало обогащаться тяжелыми элементами. Это значит, что новое поколение звезд должно было создаваться из нового «теста».

Прошло определенное время после Большого Взрыва, и протогалактическое облако превратилось в звездную систему сферической формы. Образование звезд не могло продолжаться до тех пор, пока оставалось хоть сколько-нибудь строительного материала — вещества газопылевого облака. Ведь для образования звезд из этого вещества надо, чтобы оно имело достаточную плотность. А плотность со временем стала уменьшаться. Это происходило, во-первых, потому, что часть вещества изымалась на создание звезд, а во-вторых, потому, что взрывы Сверхновых разбивали образующиеся неоднородности

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату