— А если четыре?
— Значит, придется решать задачу два раза.
— Но тогда получатся два разных ответа, — не соглашалась я. — Так не бывает.
Как всегда нас помирил Олег:
— К чему спорить? Лучше вспомним, как в таких случаях поступают в Аль-Джебре. Обозначим число прихваченных Нуликом горошин буквой
Отличная идея! Ведь под буквой можно подразумевать любое число, — значит, и два, и четыре.
— Итак, — продолжал Олег. — Нулику досталось
— Сколько же осталось, когда Нулик ушел? — спросил Сева.
— Ну, если всего горошин было
— Или
— А так как стручок потерял половину этого остатка, — рассудил Олег, — выходит, что потеряно было 1/2 × (2/3х — а).
— Теперь уже из стручка исчезло 1/3х + a + 1/2(2/3 × x — a) горошин.
— Смотрите-ка, — заметил Сева, — оказывается. Нулик вернул половину того, что прихватил. А это не то одна, не то две горошины.
— А раз он прихватил
— Значит, число исчезнувших горошин стало меньше на
— И наконец, две горошины стручок подарил, а последнюю унес ветер, — сказал Сева. — Считайте, что исчезло еще 3 горошины.
Тогда мы написали, сколько всего исчезло горошин из стручка: 1/3 × х + а + 1/2(2/3х — а) — 1/2 × а + 3.
— Все это прекрасно, но уравнения я еще не вижу, — вздохнул Сева.
— Отчего же? — удивился Олег. — Ведь ветер унес последнюю горошину. Поэтому то, что мы написали, и есть число всех горошин, которые были в стручке.
— Ага! — повеселел Сева. — Их-то мы обозначили через
— Тогда х = 1/3 × х + а + 1/2(2/3х — а) — 1/2 × а + 3.
— И уравнение составлено! — закончил Олег.
Мы смотрели друг на друга и глупо улыбались. Сева вдруг запел басом: «Еще одно последнее сказанье, и летопись окончена моя». Сумасшедший!
Мы с Олегом опасливо оглянулись. Но что это? Отовсюду за нами наблюдали внимательные, сочувственные глаза. Ба! Да здесь целая толпа знакомых. Вот милые, улыбающиеся лица мамы Двойки и ее близнецов. Вот важный Дэ. Пришли сюда и наша недавняя провожатая Эф, и фокусник, и Главный Весовщик, и Составители уравнений, и директор кафе «Абракадабра». Даже скромная Мнимая Единичка покинула на время свою карусель.
— Что случилось? — растерянно спросил Сева.
— Не удивляйтесь, — ответила мама Двойка. — С тех самых пор, как вы появились в Аль-Джебре, мы следим за каждым вашим шагом. Нам так хочется, чтобы вы полюбили нашу страну и чтобы пребывание в ней сделало вас сильнее и богаче!
— Спасибо вам, дорогие друзья! — растроганно сказал Олег. — Без вас мы никогда не составили бы уравнения, никогда не раскрыли бы тайны Черной Маски…
Смирно стоявший в сторонке Икс осторожно потянул его за рукав.
— Не забывайте, что тайна еще не раскрыта, — шепнул он, указывая на свою маску.
В самом деле! Составив уравнение, мы на радостях позабыли его решить.
— Ну, это уж пустяки, — отмахнулся Сева. — Сперва раскроем скобки…
Раскрыли. Получилось: х = 1/3 × х + а + 1/3 × х — 1/2 × а — 1/2 × а + 3
— А теперь, — скомандовала я, — подобные в правой части уравнения, приведитесь!
Подобные привелись. И вышло из этого вот что: х = 2/3 × х + 3.
— Полюбуйтесь-ка, все
Олег посмотрел на Севу укоризненно:
— А ты подумай! У нас было
У Севы даже глаза заблестели.
— Сейчас я скажу, ладно? Аль-джебр! Аль-мукабала!
Мы перенесли неизвестное вместе с коэффициентом из правой части равенства в левую и поменяли у него знак. Получилось: х — 2/3х = 3
А это не что иное, как 1/3 × х = 3.
— Стало быть, Икс в три раза больше трех, — сказала я.
— А раз так, значит, Икс равен девяти! — торжественно объявил Олег.
И как только он это сказал, черная маска упала на землю.
— Ура!!! — закричали мы.
— Ура! — подхватили жители Аль-Джебры.
Пока мы решали уравнение, они стояли так тихо, словно их вовсе не было. Зато теперь шумели и радовались вовсю. Особенно Икс. Он чуть не задушил нас в объятиях, а потом сплясал какой-то диковинный танец. Но больше всех веселился Пончик. Не переставая лаять, он перебегал от Севы к Олегу, от Олега — ко мне, прыгал, заглядывал в глаза и все время норовил лизнуть в нос…
Только один участник нашей экспедиции вел себя так тихо, что о нем чуть не позабыли: стручок.
Но о нем все-таки вспомнили. Сева достал его из кармана. И как же мы удивились, когда вместо пустого стручка увидели целый! На плотной глянцевитой кожуре отчетливо обозначились бугорки. А внутри, как в уютном зеленом вагончике, прижавшись друг к другу, лежали девять горошин.
Удивительный день! Я могла бы написать о нем еще десять писем, но зачем? Скоро вернемся в Карликанию и все тебе расскажем сами.
Таня.
В глубь Аль-Джебры!
Дорогой Нулик! Первый раз пишем тебе втроем. И как ни странно, не ссоримся. Уж если мы вместе составили уравнение, написать сообща письмо для нас теперь сущие пустяки.
Как видишь, дни, проведенные в Аль-Джебре, многому нас научили. Особенно тот день, когда мы расколдовали Черную Маску.
Долго, до самого вечера, беседовали мы с альджебрийскими друзьями и поняли, что нам еще пока что хвастаться нечем. Мы ведь составили всего-навсего уравнение первой степени. А есть еще и квадратные, и кубические, и уравнения четвертой степени… И чем выше степень уравнения, тем труднее его решать. Альджебрийцы говорят, что даже ученые научились этому не сразу.
Правда, квадратные уравнения известны были давно. О них знали еще древние китайцы и