where intelligent beings arise.
Such an observer could have been a long-lived civilization — or, more precisely, successive generations of its astronomers.
If, however, the meadow with flowers is shelled in a chaotic fashion (which means that the density of shots does not fluctuate around a certain average and therefore is not calculable), or if the roulette wheel is not “honest,” then even such an observer will not be able to determine the statistics of the frequency of intelligence in the Universe.
The impossibility of determining such a statistic is practical rather than theoretical. It does not lie in the nature of matter itself, like the Heisenberg uncertainty principle, but “only” in the incalculable overlapping of different random series, which are independent of one another and take place on varied scales of magnitude: galactic, stellar, planetary, and molecular.
A galaxy treated as a roulette wheel on which life can be “won” is not an “honest” roulette wheel. An honest roulette wheel manifests one and only one probability distribution (1:36 for each play). For roulette wheels that are shaken, that change shape during the game, that keep using different balls, there is no such statistical uniformity. All roulette wheels and all spiral galaxies are certainly similar to one another, but they are not exactly the same. A galaxy can behave like a roulette wheel placed near a stove; when the stove is hot, the heat will distort the disk, which will, in turn, affect the distribution of the winning numbers. A brilliant physicist can measure the influence of temperature on the roulette wheel, but if, in addition, the floor shakes from the trucks outside, his measurement will be off.
In this sense, the galactic game of life and death is a game played on a loaded roulette wheel.
Earlier, I referred to Einstein’s belief that God does not play dice with the world. I can now expand on what I said there. God not only plays dice with the world, he also plays an honest game — with perfect, identical dice — but only on the smallest scale, the atomic. Galaxies, on the other hand, are huge divine roulette wheels that are not honest. Please note that “honesty” here is understood mathematically (statistically) and not morally.
Observing a radioactive element, we can establish its half life — that is, how long one has to wait for half its atoms to decay. This decay is governed by statistically honest chance, since it is the same throughout the Universe for this element. Whether it sits in the laboratory, in the depths of the Earth, in a meteor, or in a cosmic nebula, its atoms behave the same way.
Whereas a galaxy, a mechanism that produces stars, planets, and occasionally life, does so — as a mechanism of chance — dishonestly, because incalculably.
Its creations are governed neither by determinism nor by the sort of indeterminism we find in the world of quanta. Therefore the course of the galactic “game for life” can be known only
II
A good three-quarters of the galaxies, like our Milky Way, are spiral disks with a nucleus and two arms. This galactic formation of gaseous clouds, dust, and stars (which gradually are born and die in it) revolves, its nucleus whirling at a greater angular velocity than the arms, which, falling behind, bend, thereby giving the whole the shape of a spiral.
The arms, however, do not move at the same speed as the stars.
A spiral galaxy owes its unchanging form to its
Orbiting at different speeds, the stars that are considerably removed from the nucleus remain outside the arm, while those near the nucleus overtake and pass through the spiral arm. Only the stars halfway out from the nucleus move at the same velocity as the arms. This is the so-called synchronous (corotational) circle. About five billion years ago, the cloud of gases from which the Sun and the planets were to form was situated near the inner edge of a spiral arm. It overtook that arm slowly — on the order of one kilometer per second. The cloud, entering deep into the density wave, became contaminated by isotopes of iodine and plutonium, the radioactive residue of a supernova that had exploded in the vicinity. The isotopes decayed, until another element, xenon, was formed from them. Meanwhile, the cloud was compressed by the density wave in which it moved, and this caused condensation until a young star — the Sun — arose. At the end of this period, some four and a half billion years ago, another supernova exploded in the neighborhood; it contaminated the circumsolar nebula (not all the protosolar gas had been concentrated yet in the Sun) with radioactive aluminum. This hastened, perhaps even caused, the emergence of the planets. Computer simulations show that, in order for a disk of gases whirling around a young star to undergo segmentation and condense into planets, some outside intervention is necessary, like the giant push supplied by the supernova that exploded not far from the Sun.
How do we know all this? From the composition of radioisotopes in the meteors of the solar system. Knowing the half life of the isotopes of iodine, plutonium, and aluminum, we can calculate when the protosolar cloud was contaminated by them. This took place at least twice; a different time of decay enables us to establish that the first contamination took place shortly after the protosolar cloud entered the inner edge of the galactic arm, and the second contamination (by radioactive aluminum) occurred some three hundred million years later.
The Sun, therefore, spent the earliest phase of its development in a region of strong radiation and shock waves that caused the formation of the planets; then, accompanied by the already cooling and solidifying planets, it left that zone. It came out into a region of high vacuum free of stellar catastrophes; thus life was able to develop on Earth without lethal disturbances.
This picture puts a big question mark over the Copernican idea that says the Earth (together with the Sun) does
Had the Sun been on the far periphery of the Galaxy and, traveling slowly,
Had the Sun, in giving birth to the planets, been close to the galactic nucleus, thus traveling faster than the arms of the spiral, it would have passed through them often. Frequent irradiations and shocks would then have made the emergence of life on Earth impossible, or would have destroyed it in an early phase of development.
Similarly, had the Sun orbited at the exact corotational point of the Galaxy, never leaving its arm, life would also not have been able to establish itself on our planet. Sooner or later it would have been killed by a neighboring supernova (supernovas explode most often within the galactic arms). Also, the average distance between stars is considerably smaller within the arms than between the arms.
Therefore, the conditions favoring planet formation prevail
These conditions are not met by the stars circling near the nucleus of the Galaxy, or by the stars on its rim, or, finally, by the stars whose orbits coincide with the corotational circle — only by those in the vicinity of this circle.
One also has to realize that an eruption of a supernova too close by, instead of “squeezing” the protosolar cloud and accelerating its planetary condensation, would scatter it like dandelion fluff. Too distant an explosion, on the other hand, might be an insufficient spur to planet formation. So the successive explosions of the supernovas in the neighborhood of the Sun must have been “properly” synchronized with the successive stages of its development as a star, as a planetary system, and, finally, as a system in which life arose.
The protosolar cloud was a “player” who approached the roulette wheel with the necessary initial capital, who increased that capital by playing and winning, and who then left the casino in time, preserving everything his run of luck had given him.