другу, как 4:1, в котором, следовательно, груз в 1 кг уравновешивает груз в 4 кг. Приложив совершенно ничтожную добавочную силу к одному плечу, мы можем поднять 1 кг на 20 м; та же самая добавочная сила, приложенная затем к другому плечу, поднимет 4 кг на 5 м, и притом груз, получающий перевес, опустится в то же самое время, какое другому грузу потребуется для поднятия. Массы и скорости здесь обратно пропорциональны друг другу: mv 1x20=m'v', 4x5. Если же мы предоставим каждому из грузов — после того как они были подняты — свободно упасть на первоначальный уровень, то груз в 1 кг, пройдя расстояние и 20м, приобретет скорость в 20 м (мы принимаем здесь ускорение силы тяжести равным в круглых цифрах 10м вместо 9,81); другой же груз, в 4 кг, пройдя расстояние в 5 м, приобретет скорость в 10м.[321]
mv2 = 1x20x20 = 400 =m'v'2 = 4 x 10 x 10 = 400.
Наоборот, времена падения здесь различны: 4 кг проходят свои 5 м в 1 секунду, а 1 кг свои 20 м в 2 секунды. Само собой разумеется, мы здесь пренебрегли влиянием трения и сопротивления воздуха.
Но после того как каждое из обоих тел упало со своей высоты, его движение прекращается. Таким образом, mv оказывается здесь мерой просто перенесенного, т. е. продолжающегося, движения, а mv2 оказывается мерой исчезнувшего механического движения.
Далее, в случае удара вполне упругих тел имеет силу то же самое: сумма произведений массы на скорость, как и сумма произведений массы на квадрат скорости, оказывается неизменной как до удара, так и после него. Обе меры имеют здесь одинаковую силу.
Иначе обстоит дело в случае удара неупругих тел. Здесь ходячие элементарные учебники (высшая механика почти совершенно не занимается больше подобными мелочами) утверждают, что сумма произведений массы на скорость как до, так и после удара одна и та же. Зато здесь происходит, дескать, потеря в живой силе, ибо если вычесть сумму произведений массы на квадрат скорости после удара из суммы их до удара, то остается некоторый при всех обстоятельствах положительный остаток; на эту величину (или на ее половину, в зависимости от точки зрения) и уменьшается живая сила благодаря взаимному проникновению и изменению формы соударяющихся тел. — Это последнее ясно и очевидно. Не так очевидно первое утверждение, а именно, что сумма произведений массы на скорость после удара остается такой же, как и до удара. Живая сила есть, вопреки Зутеру, движение, и когда теряется часть ее, то теряется движение. Таким образом, либо mv неправильно выражает здесь общее количество движения [Вewegungsmenge], либо вышеприведенное утверждение ошибочно. Вообще вся эта теорема является наследием того времени, когда еще не имели никакого представления о превращении движения, когда, следовательно, исчезновение механического движения признавалось лишь там, где этого нельзя было не признать. Так, здесь равенство суммы произведений массы на скорость до удара и после него доказывается на основании того, что эта сумма нигде ничего не теряет и не приобретает. Но если тела благодаря внутреннему трению, соответствующему их неупругости, теряют живую силу, то они теряют также и скорость, и сумма произведений массы на скорость должна после удара быть меньше, чем до него. Ведь нелепо игнорировать внутреннее трение при вычислении ти, когда оно так явственно обнаруживает свое значение при вычислении mv2.
Впрочем, это не составляет никакой разницы: даже если мы примем эту теорему и станем вычислять скорость после удара, исходя из допущения, что сумма произведений массы на скорость осталась неизменной, даже и в этом случае мы найдем, что сумма произведений массы на квадрат скорости убывает. Таким образом, mv и mv2 оказываются здесь в несогласии друг с другом, и именно на величину действительно исчезнувшего механического движения. И само вычисление доказывает, что сумма произведений массы на квадрат скорости выражает общее количество движения правильно, а сумма произведений массы на скорость — неправильно.
Таковы приблизительно все случаи, в которых употребляется в механике mv. Рассмотрим теперь несколько случаев, в которых применяется mv2.
Когда ядро вылетает из пушки, то при своем полете оно потребляет количество движения, пропорциональное mv2, все равно, ударится ли оно в твердую мишень или же перестанет двигаться благодаря сопротивлению воздуха и силе тяжести. Если железнодорожный поезд сталкивается с другим, стоящим неподвижно поездом, то сила столкновения и соответствующее разрушение пропорциональны его mv2. Точно так же мы имеем дело с mv2при вычислении всякой механической силы, потребной для преодоления некоторого сопротивления.
Но что собственно значит это удобное и столь распространенное среди механиков выражение: преодоление некоторого сопротивления?
Когда, поднимая некоторый груз, мы преодолеваем сопротивление тяжести, то при этом исчезает некоторое количество движения [Bewegungsmenge], некоторое количество механической силы, равное тому количеству ее, которое может быть снова порождено при помощи прямого или косвенного падения поднятого груза с достигнутой им высоты на его первоначальный уровень. Оно измеряется полупроизведением массы груза на квадрат достигнутой при падении конечной скорости, mv2/2.
Итак, что же произошло при поднимании груза? Механическое движение, или механическая сила исчезла как таковая. Но она не превратилась в ничто: она превратилась в механическую силу напряжения, как выражается Гельмгольц, в потенциальную энергию, как выражаются новейшие авторы, в эргаль, как называет ее Клаузиус, и в любое мгновение она может быть превращена любым механически допустимым способом обратно в то же самое количество механического движения, которое было необходимо для порождения ее. Потенциальная энергия есть только отрицательное выражение для живой силы, и наоборот.
24-фунтовое пушечное ядро ударяется со скоростью 400 м в секунду в железный борт броненосца толщиной в 1 м и при этих условиях не оказывает никакого видимого действия на броню судна. Таким образом, здесь исчезло механическое движение, равное mv2/2, т. е., так как 24 фунта = 12 кг [Немецкий фунт = 500 г. Ред.], равное 12x400x400x1/2 = 960000 килограммометров. Что же сталось с этим движением? Незначительная часть его пошла на то, чтобы вызвать сотрясение в железной броне и произвести в ней перемещение молекул. Другая часть послужила для того, чтобы раздробить ядро на бесчисленные осколки. Но самая значительная часть превратилась в теплоту, нагрев ядро до температуры каления. Когда пруссаки при переправе на остров Альс в 1864 г. направили свою тяжелую артиллерию против бронированных бортов «Рольфа Краке»[322], то при каждом удачном попадании они видели в темноте сверкание внезапно раскалявшегося ядра, а Уитворт доказал уже раньше путем опытов, что разрывные снаряды, направляемые против броненосцев, не нуждаются в запальнике: раскаленный металл сам воспламеняет заряд взрывчатого вещества. Если принять механический эквивалент единицы теплоты равным 424 килограммометрам[323], то вышеприведенному количеству механического движения соответствуют 2264 единицы теплоты. Теплоемкость железа равняется 0,1140; это значит, что то же самое количество теплоты, которое нагревает 1 кг воды на 1° С и которое принимается за единицу теплоты, способно нагреть на 1° Цельсия 1/0,1140 = 8,772 кг железа. Следовательно, вышеприведенные 2264 единицы теплоты поднимают температуру 1 кг железа на 8,772x2264=19860° С или же 19860 кг железа на 1°. Так как это количество теплоты распределяется равномерно между броней судна