клетки (масштаб не соблюден) которые там содержатся. Именно клеточное структурное сопряжение позволяет клеткам взаимодействовать только с некоторыми ионами, так как если во внутреннюю среду клетки проникнут другие ионы (например, ионы цезия или лития), то структурные изменения, которые они вызовут в клетке, прервут ее аутопоэз.

Почему же в клетках каждого типа аутопоэз происходит только при вполне определенном виде регулярного и рекуррентного взаимодействия и не происходит при других взаимодействиях? Ответ на этот вопрос может быть дан только со ссылкой на филогению, или историю соответствующей линии клеток, иначе говоря, тип структурной связи каждой клетки в данный момент есть существующее на данный момент состояние истории структурных преобразований в рамках той филогении, которой принадлежит данная клетка. Иными словами, момент в естественном дрейфе наследственной линии, о котором идет речь возникает вследствие сохранения структурного сопряжения предшествующих клеток в той же наследственной линии. Так, в приведенном выше примере в данном состоянии клеточного естественного дрейфа мембраны функционируют осуществляя транспорт ионов натрия и кальция, но не каких-либо других ионов.

Структурное сопряжение со средой как условие существования охватывает все возможные клеточные взаимодействия. Следовательно, оно включает в себя и взаимодействия с другими клетками. Клетки многоклеточных систем нормально функционируют, только привлекая ближайшее клеточное окружение в качестве среды для реализации своего аутопоэза. Такие системы возникают в результате естественного дрейфа наследственных рядов, в которых удавалось сохранять ближайшее клеточное окружение.

Превосходным источником примеров, особенно убедительно подтверждающих сказанное, может служить группа одноклеточных организмов, известных под названием миксомицетов. Например, когда спора миксомицета Physarum начинает развиваться, возникает клетка (рис. 20, вверху). Если окружающая среда влажная, то у клетки вырастает жгутик, и она обретает подвижность. Если же окружающая среда сухая, то у клетки развиваются ложноножки, и она становится похожей на амебу. Затем эти две разновидности клеток делятся и порождают множество других клеток; удерживаемые структурным сопряжением, эти клетки сливаются и образуют плазмодий, который, в свою очередь, формирует макроскопическое плодоносящее тело, вырабатывающее споры (см. рис. 21).

У таких филогенетически древних эукариот тесная клеточная агрегация достигает своей кульминации в новом единстве, когда в результате слияния клеток образуется плодоносящее тело. Оно представляет собой метаклеточное единство, существование которого исторически составляется клетками, порождающими его в завершение жизненного цикла того органического единства, которому принадлежит данное многоклеточное единство (и которое определяется указанным жизненным циклом). При этом необходимо четко понимать, что формирование метаклеточных единств, способных давать начало ряду поколений путем репродуцирования через отдельные клетки, порождает феноменологию, отличную от феноменологии образующих их клеток. Такое метаклеточное единство, или единство второго порядка, будет иметь структурное сопряжение и онтогенез, адекватные ее структуре как составного единства. В частности, метаклеточные системы, аналогичные описанной выше, обладают макроскопическим онтогенезом, а не микроскопическим, присущим образующим их клеткам.

Более сложную ситуацию можно рассмотреть на примере другого миксомицета. Dictyostelium (рис. 21)[6]. В этой группе, если окружающая среда обладает некоторыми специфическими свойствами, амебоподобные особи собираются в плодоносящее тело, как в предыдущем примере. Хотя отдельные клетки при этом не сливаются, но и в этой группе мы обнаруживаем, что единства ьторого порядка демонстрируют отчетливо выраженное разнообразие клеточных типов. Например, клетки на верхнем конце плодоносящего тела порождают споры, в то время как клетки у основания, не обладая такой способностью, заполняются вакуолями и перегородками, которые служат механической опорой для всей метаклеточной системы. На этом примере мы видим, что в динамизме такой тесной клеточной агрегации в ее жизненном цикле структурные изменения, претерпеваемые каждой клеткой в истории ее взаимодействий с другими клетками, взаимно дополнительны при ограничениях, налагаемых участием клеток в образуемом ими метакле-точном единстве. Именно поэтому онтогенетические структурные изменения каждой клетки с необходимостью отличаются в зависимости от того, каким образом те или иные клетки участвуют через свои взаимодействия и отношения с соседними клетками в образовании единства второго порядка.

Мы подчеркиваем, что тесная агрегация клеток, происходящих от одной клетки, агрегация, которая превращается в метаклеточное единство, есть условие, которое согласуется с непрерывным аутопоэзом зтих клеток. Однако такие клеточные скопления не являют ся биологически необходимыми, поскольку многие организмы на протяжении долгой истории своего существования оставались одноклеточными. В тех же наследственных рядах где клеточная агрегация произошла, она привела к глубоким последствиям для соответствующих историй структурных преобразований. Рассмотрим эту ситуацию более подробно.

Ясно, что онтогенез метаклеточной системы должен определяться областью взаимодействий, задаваемых ею как единым целым, а не отдельными взаимодействиями образующих ее клеток. Иначе говоря, жизнь многоклеточной особи как единства протекает через функционирование ее компонент, но не определяется их свойствами. Но каждая из многоклеточных особей возникает в результате деления и обособления наследственных линий клеток, которое начинается в момент оплодотворения одной клетки, или зиготы, порожденной некоторыми органами или частями многоклеточного организма. Если новые особи не рождаются, то наследственная линия обрывается. А для того, чтобы новые особи рождались, их возникновение должно начинаться с одной клетки. Все происходит по следующей простой схеме: логика строения каждого многоклеточного организма требует, чтобы он был составной частью цикла, в котором с необходимостью существует одноклеточная стадия.

Именно на стадии одноклеточной репродуктивной фазы многоклеточного организма происходят изменения, передающиеся в поколениях. Поэтому не существует принципиальных отличий между путями становления наследственных линий у одно- и многоклеточных организмов. Иначе говоря, жизненный цикл многоклеточного организма представляет собой единство, в котором онтогенез заключается в переходе от одноклеточного к многоклеточному состоянию, но репродукция и репродуктивные изменения происходят на одноклеточной стадии.

Все известные многоклеточные организмы представляют собой искусные вариации на одну и ту же тему: клеточная организация и построение филогении. Каждая многоклеточная особь представляет собой тщательно подготовленный этап в онтогенезе наследственного ряда, тогда как его изменения продолжают происходить на клеточном уровне. В этом отношении многоклеточность не вносит ничего принципиально нового. Новизна состоит в том, что многоклеточность делает возможным возникновение множества различных классов особей, поскольку становятся возможными многочисленные наследственные линии, использующие разнообразные способы сохранения онтогенетической структурной связи в окружающей среде. Неисчерпаемое разнообразие живых существ на Земле, включая нас с Вами, обусловлено появлением многоклеточного варианта в рамках клеточных наследственных рядов.

Вместе с тем следует заметить, что половое размножение многоклеточных организмов не изменяет основную характеристику репродукции, с которой мы познакомились в предыдущей главе. Действительно, половое размножение требует, чтобы одна из клеток многоклеточного организма стала дополнительно обладать независимой операциональной динамикой (как сперматозоид) и слилась с другой клеткой другого организма того же класса, образуя зиготу, т. е. одноклеточную фазу этого же организма. Существуют также многоклеточные организмы, которые размножаются не только половым путем, но и простым делением, или исключительно делением. В зтом случае единством, изменяющимся в чреде поколений, является не клетка, а весь организм.

Последствия полового размножения наглядно проявляются в возникающей в результате него богатой структурной рекомбинации. Половое размножение, с одной стороны, делает возможным скрещивание репродуктивных линий, а с другой — резко увеличивает число структурных изменений, возникающих в каждом репродуктивном акте. Таким способом генетика и наследственность обогащаются эффектами, возникающими в результате комбинаций структурных альтернатив, присущих различным группам живых существ. Эффект возрастания изменчивости, который (как будет показано в следующей главе) делает

Вы читаете Древо познания
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату