Почему же в клетках каждого типа аутопоэз происходит только при вполне определенном виде регулярного и рекуррентного взаимодействия и не происходит при других взаимодействиях? Ответ на этот вопрос может быть дан только со ссылкой на филогению, или историю соответствующей линии клеток, иначе говоря, тип структурной связи каждой клетки в данный момент есть существующее на данный момент состояние истории структурных преобразований в рамках той филогении, которой принадлежит данная клетка. Иными словами, момент в естественном дрейфе наследственной линии, о котором идет речь возникает вследствие сохранения структурного сопряжения предшествующих клеток в той же наследственной линии. Так, в приведенном выше примере в данном состоянии клеточного естественного дрейфа мембраны функционируют осуществляя транспорт ионов натрия и кальция, но не каких-либо других ионов.
Структурное сопряжение со средой как условие существования охватывает все возможные клеточные взаимодействия. Следовательно, оно включает в себя и взаимодействия с другими клетками. Клетки многоклеточных систем нормально функционируют, только привлекая ближайшее клеточное окружение в качестве среды для реализации своего аутопоэза. Такие системы возникают в результате естественного дрейфа наследственных рядов, в которых удавалось сохранять ближайшее клеточное окружение.
Превосходным источником примеров, особенно убедительно подтверждающих сказанное, может служить группа одноклеточных организмов, известных под названием миксомицетов. Например, когда спора миксомицета
У таких филогенетически древних эукариот тесная клеточная агрегация достигает своей кульминации в новом единстве, когда в результате слияния клеток образуется плодоносящее тело. Оно представляет собой метаклеточное единство, существование которого исторически составляется клетками, порождающими его в завершение
Более сложную ситуацию можно рассмотреть на примере другого миксомицета.
Мы подчеркиваем, что тесная агрегация клеток, происходящих от одной клетки, агрегация, которая превращается в метаклеточное единство, есть условие, которое согласуется с непрерывным аутопоэзом зтих клеток. Однако такие клеточные скопления не являют ся биологически необходимыми, поскольку многие организмы на протяжении долгой истории своего существования оставались одноклеточными. В тех же наследственных рядах где клеточная агрегация
Ясно, что онтогенез метаклеточной системы должен определяться областью взаимодействий, задаваемых ею как единым целым, а не отдельными взаимодействиями образующих ее клеток. Иначе говоря, жизнь многоклеточной особи как единства протекает через функционирование ее компонент, но не определяется их свойствами. Но каждая из многоклеточных особей возникает в результате деления и обособления наследственных линий клеток, которое начинается в момент оплодотворения одной клетки, или зиготы, порожденной некоторыми органами или частями многоклеточного организма. Если новые особи не рождаются, то наследственная линия обрывается. А для того, чтобы новые особи рождались, их возникновение должно начинаться с одной клетки. Все происходит по следующей простой схеме: логика строения каждого многоклеточного организма требует, чтобы он был составной частью цикла, в котором с необходимостью существует одноклеточная стадия.
Именно на стадии одноклеточной репродуктивной фазы многоклеточного организма происходят изменения, передающиеся в поколениях. Поэтому не существует принципиальных отличий между путями становления наследственных линий у одно- и многоклеточных организмов. Иначе говоря, жизненный цикл многоклеточного организма представляет собой единство, в котором онтогенез заключается в переходе от одноклеточного к многоклеточному состоянию, но репродукция и репродуктивные изменения происходят на одноклеточной стадии.
Все известные многоклеточные организмы представляют собой искусные вариации на одну и ту же тему: клеточная организация и построение филогении. Каждая многоклеточная особь представляет собой тщательно подготовленный этап в онтогенезе наследственного ряда, тогда как его изменения продолжают происходить на клеточном уровне. В этом отношении многоклеточность не вносит ничего принципиально нового. Новизна состоит в том, что многоклеточность делает возможным возникновение множества различных классов особей, поскольку становятся возможными многочисленные наследственные линии, использующие разнообразные способы сохранения онтогенетической структурной связи в окружающей среде. Неисчерпаемое разнообразие живых существ на Земле, включая нас с Вами, обусловлено появлением многоклеточного варианта в рамках клеточных наследственных рядов.
Вместе с тем следует заметить, что половое размножение многоклеточных организмов не изменяет основную характеристику репродукции, с которой мы познакомились в предыдущей главе. Действительно, половое размножение требует, чтобы одна из клеток многоклеточного организма стала дополнительно обладать независимой операциональной динамикой (как сперматозоид) и слилась с другой клеткой другого организма того же класса, образуя зиготу, т. е. одноклеточную фазу этого же организма. Существуют также многоклеточные организмы, которые размножаются не только половым путем, но и простым делением, или исключительно делением. В зтом случае единством, изменяющимся в чреде поколений, является не клетка, а весь организм.
Последствия полового размножения наглядно проявляются в возникающей в результате него богатой структурной рекомбинации. Половое размножение, с одной стороны, делает возможным скрещивание репродуктивных линий, а с другой — резко увеличивает число структурных изменений, возникающих в каждом репродуктивном акте. Таким способом генетика и наследственность обогащаются эффектами, возникающими в результате комбинаций структурных альтернатив, присущих различным группам живых существ. Эффект возрастания изменчивости, который (как будет показано в следующей главе) делает