добавляемый ко многим другим голосам во время бурного семейного спора, когда достигаемая согласованность действий не зависит от того, что именно говорит любой конкретный член семьи.

Операциональная замкнутость нервной системы

Как было сказано, поведение — это производимое наблюдателем описание изменений состояния системы относительно окружающей среды, с которой взаимодействует данная система Мы говорим также, что нервная система не создает поведение, а необычайно его расширяет Необходимо пояснить, что мы имеем в виду под «расширением». Это значит, что нервная система возникает в филогенетической истории живых существ как сеть специализированных клеток (нейронов), включенная в организм таким образом, что она связывает точки сенсорных поверхностей с точками моторных поверхностей. Таким образом, с помощью нейронной сети, обеспечивающей такие связи, число возможных сенсомоторных корреляций в организме увеличивается и область поведения расширяется.

Как теперь стало ясно, сенсорная поверхность включает в себя не только те клетки, которые мы видим извне как рецепторы, способные воспринять возбуждение, поступающее из внешней среды, но и клетки, которые может возбудить сам организм, в том числе нейронная сеть. Например, в некоторых артериях имеются хеморецепторные клетки, способные реагировать на изменения концентрации кислорода в крови позвоночных. В свою очередь, такие клетки воздействуют на некоторые нейроны, изменяя их активность, и тем самым влияют на состояние всей сети, что приводит к изменениям в ритме активности дыхательных мышц, а это сказывается на уровне кислорода в крови. Таким образом, нервная система функционирует как механизм, поддерживающий в определенных пределах структурные изменения многоклеточного организма Осуществляс ? ся это через многочисленные цепи нейронной активности, Структурно связанные со средой. В этоы смысле можно сказать, что нервная система характеризуется наличием операциональной замкнутости. Иначе говоря, нервная система организована как сеть активных компонент, и любое изменение соотношений активности в ней приводит к дальнейшим изменениям соотношений активности. Некоторые из этих соотношений остаются инвариантными при непрерывных возмущениях, обусловленных и собственной динамикой нервной системы, и взаимодействиями организма, который она объединяет в целое.

Иначе говоря, нервная система функционирует как замкнутая сеть изменений в соотношениях активности между ее компонентами.

Таким образом, испытывая надавливание в какой-либо части тела, мы как наблюдатели можем сказать: «Ага! Сокращение вот этой мышцы заставит меня поднять руку». Но с точки зрения функционирования самой нервной·системы (вспомним нашу аналогию с человеком на борту подводной лодки) происходящее всецело сводится к постоянному поддержанию определенных соотношений между сенсорными и моторными элементами, испытавшими временное возмущение в результате надавливания. Поддерживаемые соотношения в рассматриваемом случае довольно просты: это баланс между сенсорной активностью и мышечным тонусом. Трудно описать в нескольких словах, что именно определяет баланс мышечного тонуса по отношению к остальной активности, нервной системы но, как правило, все поведение есть не что иное, как внешнее проявление пляски внутренних взаимосвязей организме. Задача, с которой сталкивается исследователь, — найти в каждом случае точные механизмы таких нейронных связей.

Рис 48 Относительные размеры головного мозга У различных животных

Естественная история нервной системы

У кишечнополостных (гидры) нервная система равномерно распределена по всему организму. У других животных, в том числе у млекопитающих, это не так. В процессе трансформации нервной системы в истории развития живых сущес t в прослеживаются две основные тенденции: (I) объединение нейронов в компактную структуру (нервный тяж) и (2) сосредоточение большей части объема нейронов в головном конце (цефаяизация). : Так, у сегментированных животных, например, i у земляных червей, нервная система пред-: ставляет собой Труппы клеток, собранные в нервные узлы — ганглии, расположенные в каждом сегменте тела животного; однако эти ганглии уже связаны со слабо выраженным головным нервным узлом. У других животных концентрация нейронов в головном конце может быть огромной, как это отчетливо видно на примере осьминогов и в еще большей мере — человека.

Сказанное свидетельствует, что по мере того, как растет число различных способов нейронных взаимодействий и вследствие этого увеличивается головной отдел нервной сис-темы, функции нервной системы становятся необычайно разнообразными. Это хорошо видно на примере филогенетических древ позвоночных, моллюсков и насекомых. Иначе говоря, увеличение массы головного мозга существенно расширяет возможности организма, связанные с его структурной пластичностью. Это имеет первостепенное значение

Сказанное выше показывает, что функционирование нервной системы полностью согласуется с ее основополагающей ролью автономного единства, в котором каждое состояние активности приводит к другому состоянию активности того же единства, поскольку его функционирование носит круговой характер, или характеризуется операциональной замкнутостью. Таким образом, собственная структура нервной системы не нарушает, а усиливает операциональную замкнутость, которая определяет автономную природу живого существа. Мы начинаем ясно понимать, каким образом каждый когнитивный процесс непременно базируется на существовании организма как единства и на операциональной замкнутости его нервной системы. Следовательно, любое познание есть не что иное, как создание сенсорно-эффекторных корреляций в области структурного сопряжения нервной системы.

Пластичность

Мы уже несколько раз упоминали о том, что нервная система находится в состоянии непрерывного структурного изменения, т. е. обладает гластичностью. Действительно, пластичность — важнейшее свойство, влияющее на структуру организма И именно вследствие своей структурной пластичности нервная система, посредством своих сенсорных и эффекторных органов, вовлеченных во взаимодействия организма, осуществляющие отбор его структурных изменений, — участвует в структурном дрейфе организма с сохранением его адаптации.

Обычно структурное изменение нервной системы не влечет за собой радикальной перестройки всей системы связей. В целом связи системы инвариантны, и, как правило, они одинаковы у всех особей одного вида. При формировании взрослой особи из оплодотворенной зиготы, в процессе развития и клеточной дифференциации, по мере увеличения числа нейронов они начинают ветвиться и соединяться в соответствии со структурой, присущей данному виду. Как именно происходит этот процесс уникальной локальной детерминации — одна из интереснейших загадок современной биологии.

Где же происходят структурные изменения, если не в линиях связи? Ответ в том, что структурные изменения действительно происходят, но не в соединениях, которые объединяют группы нейронов, a в локальных характеристиках таких соединений. Иначе говоря, изменения происходят в конечных разветвлениях и в синапсах. Там молекулярные изменения приводят к изменениям в эффективности синаптических взаимодействий, которые могут существенно сказвться нв функционировании всей нейронной сети

В качестве примера рассмотрим следующий эксперимент. Найдем одну из больших мышц, двигающих ногой мыши, выделим нерв, идущий к этой мышце от спинного мозгв, и перережем его, а звтем дадим животному оправиться после перенесенной операции. При вскрытии прооперированной мыши мы обнаружим, что мышца, к которой подходил перерезанный нерв, атрофировалась и сталв короче, хотя

Вы читаете Древо познания
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату