Важный шаг на этом пути был сделан Ньютоном. Он доказал, что падение тел на Земле, движение Луны вокруг Земли и движение звезд определяются одной причиной - притяжением с силой, обратно пропорциональной квадрату расстояния. Он показал, что все эти явления можно количественно рассчитать с помощью сформулированных им законов механики.

Следующий, не менее грандиозный шаг сделал Джеймс Максвелл. Он получил удивительные уравнения, объединившие все явления электричества, магнетизма и оптики. Замечательный немецкий физик, один из создателей статистической физики - Людвиг Больц-ман сказал об уравнениях Максвелла: «Не бог ли начертал эти письмена?»

В начале XX века физики знали только два типа взаимодействий - электромагнитное и гравитационное. Уже первые исследования атомных ядер показали, что нейтроны и протоны, входящие в состав ядра, удерживаются силами, в десятки раз большими электромагнитных. Эти частицы связаны сильными взаимодействиями. Кроме того, были обнаружены гораздо более слабые силы между электронами, нейтрино и нуклонами (нейтронами и протонами). Эти взаимодействия ответственны за радиоактивный распад и названы «слабыми». Они вызывают, в частности, превращение свободного нейтрона в протон, электрон и антинейтрино.

До недавнего времени казалось, что между четырьмя взаимодействиями - сильным, слабым, гравитационным и электромагнитным - не существует никакой связи. В последние десятилетия усилия физиков были направлены на их объединение. Электромагнитное и слабое взаимодействия объединяются в «электрослабое». Они, как мы уже упоминали, оказались проявлениями более общего единого взаимодействия. В чем красота такого объединения?

Возникли неожиданные связи между разнородными явлениями. Так, постоянная, определявшая величину слабого взаимодействия, оказалась связанной с зарядом электрона. Теория объяснила многие явления, казавшиеся ранее загадочными.

Еще далека от завершения, но, можно надеяться, на верном пути теория Великого объединения, которая даст единое объяснение электромагнитным, слабым и сильным взаимодействиям. Согласно предсказаниям этой теории протон не стабильная частица, время распада протона на позитрон и нейтральный пион или на нейтрино и положительный пион составляет примерно 1030-1033 лет. Уже поставлен ряд опытов по проверке этого предсказания. Если распад обнаружится, то, по крайней мере, подтвердится идея Великого объединения.

В последнее время многие теоретики пытаются создать теорию Суперобъединения, которое охватило бы все четыре взаимодействия - сильное, электромагнитное, слабое и гравитационное.

У Пастернака есть строки: «В родстве со всем, что есть, уверясь и знаясь с будущим в быту, нельзя не впасть к концу, как в ересь, в неслыханную простоту…» К сожалению, пока попытки объединения слишком сложны, и пройдет немало времени, прежде чем откроется «неслыханная простота». Картина только начала возникать. Она еще недостаточно красива и, значит, далека от истины. И тем не менее уже сейчас ясно, что мы на пути к более глубокому пониманию величественной красоты, скрытой во Вселенной.

Поиски симметрии законов природы показывают, как извилист путь к научно доказанной истине, как иногда приходится отказаться от утверждений, казалось, незыблемых, и как внезапно возникают неожиданные связи между совершенно разнородными явлениями. Вопросы, о которых сейчас пойдет речь, касаются самых глубоких свойств Вселенной - связи законов природы со свойствами пространства и времени. Это вопросы, которые определяют характер нашего понимания мира.

Законы сохранения вытекают из симметрии пространства и времени

Существует поразительная и в то же время естественная связь между свойствами пространства и времени и так называемыми «законами сохранения», такими, как закон сохранения энергии или закон сохранения количества движения. Эту замечательную связь сформулировала немецкий математик Эмми Нетер (1882-1935).

СИММЕТРИЧНО ЛИ ПРОСТРАНСТВО?

Симметрия обозначает тот внд согласованности отдельных частей, который объединяет их в единое целое. Красота тесно связана с симметрией.

Гермаи Вейль

Каждому виду симметрии соответствует свой закон сохранения. Так, закон сохранения энергии - следствие симметрии природы относительно сдвигов во времени. Симметрия относительно сдвигов в пространстве приводит к закону сохранения количества движения, или импульса. Мы часто пользуемся этим законом, на нем основано ракетное движение. Так как полное количество движения должно сохраняться, то импульс самой ракеты (произведение ее массы на скорость) увеличивается на величину импульса, уносимого вылетающими газами.

Симметрия относительно поворотов приводит к сохранению момента количества движения, или углового момента, частицы. Для частицы, движущейся по окружности, момент есть произведение расстояния от частицы до центра вращения па массу и скорость частицы. Для неточечных тел нужно сложить моменты отдельных, достаточно малых частей тела. Законом сохранения момента широко пользуются балерины: приближая руки к телу, они уменьшают расстояние до оси вращения и в силу сохранения момента увеличивают ско-

рость вращения. Надеюсь, балеринам будет приятно узнать, что их пируэты получаются благодаря симметрии пространства относительно поворотов.

Попробую пояснить, как неравномерность хода времени приводит к несохранению энергии. Допустим, что неравномерность хода времени проявилась в том, что начиная с некоторого момента стала периодически изменяться постоянная всемирного тяготения. Тогда легко построить машину, которая будет получать энергию из ничего, - «вечный двигатель». Для этого нужно поднимать грузы в период слабого тяготения и превращать приобретенную ими энергию в кинетическую, сбрасывая грузы в период увеличения тяготения. Видите, неравномерность хода времени, то есть изменение относительного ритма разных процессов, приводит к нарушению закона сохранения энергии.

Теперь не покажется странным, что законы сохранения энергии и других величин выполняются во всех явлениях природы. Ведь они вытекают из такого общего свойства нашего мира, как симметрия пространства и времени.

Из сказанного следует, что однородность хода времени можно проверить по тому, насколько точно выполняется закон сохранения энергии. Если у нас возникло ощущение, что в юности время шло быстрее, свет горел ярче, краски были свежее, мысли острее, его нужно объяснять изменениями, происходящими внутри нас, а не изменением хода времени; время течет равномерно. И, как ни удивительно, для доказательства достаточно убедиться, что в бездушных машинах энергия с большой точностью сохраняется. И наоборот, только из того факта, что атомы во все времена испускают свет с колоссальной точностью одной и той же частоты, можно заключить, что с такой же точностью выполняется закон сохранения энергии.

Почему сердце слева?

Зеркальная симметрия законов природы означает, что если две экспериментальные установки отличаются только тем, что одна есть зеркальное отражение другой, то такие установки работают совершенно одинаково.

Но разве не нарушается это требование в повседневной жизни? Примеров нарушения зеркальной симметрии в природе немало. У людей сердце расположено с левой стороны, а для соблюдения зеркальной симметрии в процессе эволюции должно было получиться равное количество лево- и правосердечных. Однако при более внимательном взгляде противоречие разъясняется. Рассмотрим объект менее сложный, чем человек. Существуют, например, два типа кварца, которые по своему молекулярному строению зеркально подобны, как правая и левая руки. Эти два типа кварца встречаются на Земле в различных количествах. То же относится и к другим минералам. Поэтому асимметрию живых объектов можно объяснить тем, что пища или «строительный материал», встречающийся в природе, не имеет зеркальной симметрии. Тогда вопрос сводится к более простому - к нарушению зеркальной симметрии в мертвой природе.

В связи с этим следует вспомнить об одном удивительном опыте Луи Пастера.

Было известно, что поляризованный свет, проходя через виннокаменную кислоту, встречающуюся в

Вы читаете ПОИСКИ ИСТИНЫ
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату