иного результата. Как бы точно мы ни определяли состояние до падения на экран, нельзя предсказать, в какой именно точке фотопластинки окажется электрон. Можно указать только распределение вероятности найти его в той или иной точке.
Не означает ли эта неоднозначность нарушения причинности? Классическая физика не знала неопределенности. Успехи небесной механики в XVII и XVIII веках внушили глубокую веру в возможность однозначных предсказаний. Эту гордость неограниченными возможностями науки выразил Пьер Лаплас (1749-1827): «Дайте мне координаты и скорости всех частиц - и я предскажу будущее Вселенной!» Появление электродинамики не изменило этой веры. Хотя начальное состояние в электродинамике задается не только координатами и скоростями частиц, но и распределением полей, - ее предсказания однозначны.
Предсказания классической статистической физики носят вероятностный характер. Она отвечает, например, на вопрос, какова вероятность найти частицу нагретого газа с той или иной энергией, или, иными словами, предсказывает распределение частиц по энергии. Но есть важное отличие от квантовой механики. Вероятность в статистической физике есть результат сложности системы, результат неточного определения начального состояния. Кроме того, механическая система должна обладать важным свойством - она должна быть «размешиваемой». Это означает, что малая неточность начальных условий за короткое время приводит к размешиванию системы по всей области ее возможных состояний. Но за всем этим стоит однозначность механических законов.
В квантовой механике неопределенность принципиальная, она следует из дополнительности квантовомеха-нических свойств и классического описания. И, кроме того, она проявляется уже для самых простых объектов, для индивидуальных наблюдений за одной частицей.
Главное открытие квантовой механики - вероятностный характер законов Вселенной. На некоторые вопросы нельзя однозначно ответить.
Как мы уже знаем, «задать координаты и скорости всех частиц» невозможно. Самое большее, что можно сделать - задать в начальный момент волновую функцию. Квантовая механика позволяет однозначно найти волновую функцию в любой более поздний момент. Вместо восклицания Лапласа можно произнести с такой же гордостью: «Дайте мне волновую функцию всех частиц - и я предскажу будущее!»
Впрочем, невозможность предсказывать будущее в практической жизни не связана с квантовой неопределенностью. Мы имеем дело с такими сложными системами, в которых определить начальную волновую функцию так же невозможно, как координаты и скорости.
Нильс Бор отмечал, что попытка определить волновую функцию живого объекта немедленно приводит к его гибели. Наше будущее зависит от таких сложных, неопределенных систем, как люди! Но вернемся к физическим законам.
Итак, мы не можем проследить траектории отдельных частиц; причинность в лапласовом смысле нарушена, но в более точном смысле она соблюдается. Из максимально полно определенного начального состояния однозначно следует единственно возможное конечное состояние. Изменился только смысл слова «состояние». Что же делать, если выяснилось, что понятие «состояние», принятое в классической физике, принципиально неосуществимо?
Состояние частицы можно изменить, не прикасаясь к ней!
Невозможность однозначно предсказать исход единичного опыта была настолько непривычна, что вызвала много возражений. Является ли квантовомеханическое описание полным, или необходимо создать более точную теорию, где все было бы однозначно? Не надо ли изменить интерпретацию волновой функции?
Эйнштейн писал в 1936 году: «Это мнение логично и не приводит к противоречиям, но оно настолько противоречит моему научному инстинкту, что я не могу отказаться от поисков более полного понимания».
Многолетний спор Бора с Эйнштейном привел к углублению и уточнению теории измерений в квантовой физике. Дальнейшее развитие до сих пор подтверждало позицию Бора о полноте квантовомеханического описания реальности.
Чтобы понять существо затруднений, нужно разобраться в особенностях квантовомеханических наблюдений.
Прежде всего свойства микроскопических объектов нельзя изучать, отвлекаясь от способа наблюдения. В зависимости от него электрон проявляет себя либо как волна, либо как частица, либо как нечто промежуточное. Разумеется, есть также свойства, не зависящие от способа наблюдения: масса, заряд, спин частицы, барионный заряд, магнитный момент… Но всякий раз, когда мы хотим измерить какие-либо величины, не имеющие определенного значения, результат будет зависеть от способа наблюдения. Это свойство квантовых объектов В. А. Фок называл «относительностью к средствам наблюдения». Доквантовая физика знала только относительность, связанную с движением, - относительность скорости, относительность формы: быстро движущееся колесо из-за сокращения Лоренца имеет вид эллипса. В квантовой теории результат зависит от того, как и что измерять в одной и той же системе координат.
Мы уже говорили, что причины этого неустранимы- мы вынуждены описывать квантовые объекты на классическом языке. Но так же, как объективность явлений природы не умаляется, а выявляется теорией относительности, относительность к средствам наблюдения в квантовой теории нисколько не затрудняет определение объективных свойств микрообъектов. История развития Вселенной не делается менее объективной от того, что мы описываем ее на нашем человеческом языке. Язык классической физики, на котором говорят наши средства наблюдения и на котором мы формулируем свои мысли, позволяет полностью охарактеризовать свойства микрообъектов. Мы неминуемо, но без потерь пользуемся субъективными инструментами для описания объективного. Карл Вейцзеккер - немецкий физик, много сделавший в теории ядра, - сказал: «Природа существовала до человека, но человек был до естествознания», И вместе с тем слишком частое упоминание слова «наблюдатель» при описании измерений в квантовой механике оставляет неприятное чувство. Мне кажется, от этого легко избавиться - можно не говорить о наблюдателе и под словом «наблюдение» понимать способ выяснить тот или иной вопрос, сформулированный на классическом языке. Мы как бы узнаем форму предмета, изучая его проекции - рассекая его ножом по разным плоскостям.
Вернемся к нашему измерительному прибору - экрану с дыркой. После прохождения отверстия поперечный импульс делается неопределенным. Это и приводит к дифракционному пятну. А что получится, если уточнить импульс отдачи электрона? Для этого нужно сделать такое устройство, чтобы экран вместе с отверстием мог свободно перемещаться в поперечном направлении. Измеряя изменение импульса экрана, мы по закону сохранения количества движения найдем и поперечный импульс электрона. Если импульс отдачи определен очень точно, то положение экрана будет полностью неопределенным, и дифракционная картина исчезнет - любое зерно на фотопластинке может почернеть с одинаковой вероятностью. Электрон будет такой же плоской волной, как и до экрана, только с новым определенным значением импульса.
Теперь вы видите, как работает относительность к средствам наблюдения! От наблюдения за движением экрана зависит характер почернения пластинки. Допустим, экран и пластинка находятся в разных городах. Измеряя в одном городе, я как будто могу повлиять на результат измерений в другом… Не мистика ли? Нельзя ли использовать такое явление для экстрасенсорной связи? Это так важно, что нужно задуматься. А лучший способ думать - получить то же самое другим способом. Ю. Манин говорит в упомянутой нами книжке: «Думать - значит вычислять, волнуясь».
Сделаем еще один мысленный эксперимент. Просверлим в экране второе отверстие на большом расстоянии от первого. И опять посмотрим, что получается, когда на экран падает пучок света. На втором экране мы увидим хорошо известную в оптике интерференционную картину. Помимо двух светлых пятен, против каждого из отверстий получится система светлых и темных кривых, заполняющих плоскость между пятнами. Светлые места будут там, где волны, идущие от каждого из отверстий, складываются, а темные - где они вычитаются. Это и есть интерференция. Если одно отверстие закрыть, вся эта красивая картина исчезнет.
Разумеется, то же самое будет и с электронами. Как бы редко они ни падали, на фотопластинке в конце концов получится интерференционная картина. Если сделать заслонку, закрывающую одно отверстие, на фотопластинке не будет интерференции - будет лишь одно дифракционное пятно.
Здесь проявляется еще одна важная особенность квантовой механики: волновая функция складывается