тригонометрических функций. Его таблица синусов имела частоту через каждую минуту и точность до седьмого знака. Для этого величину радиуса образующей окружности он брал равной 107, так как десятичные дроби еще не были известны. Он ввел в европейскую практику тригонометрические функции, получившие в XVII веке названия тангенса и котангенса, составив таблицу их значений.

В 1482 году в Венеции была впервые напечатана (по латыни) книга Евклида «Начала». С этого момента для математиков кончилось Средневековье и началось Новое время.

Математика эпохи Возрождения

В XVI веке европейские математики сумели наконец сравниться в мудрости с византийцами и превзойти их там, где успехи византийцев были невелики: в решении уравнений.

Уравнения разных степеней

Ровесник Леонардо да Винчи, профессор Сципион дель Ферро из Болоньи (ум.1526) посвятил всю жизнь решению различных алгебраических уравнений. Затруднения, связанные с неудобными обозначениями неизвестных величин, были огромны.

Как мы показали выше, важнейшие достижения математиков средневековой Европы относились к области алгебры, к усовершенствованию ее аппарата и символики. Региомонтан обогатил понятие числа, введя радикалы и операции над ними. Это позволяло ставить проблему решения возможно более широкого класса уравнений в радикалах. И в этой именно области были достигнуты первые успехи – решены в радикалах уравнения 3-й и 4-й степени.

Ход событий, связанных с этим открытием, освещается в литературе разноречиво. В основном он таков. Профессор университета в Болонье Сципион дель Ферро вывел формулу для нахождения положительного корня конкретных уравнений вида х3 + рх = q (p›0, q ›0). Он держал ее в тайне, приберегая как оружие против своих противников в научных диспутах, но перед смертью сообщил эту тайну своему родственнику и преемнику по должности Аннибалу делла Наве и ученику своему – Фиоре.

В начале 1535 года должен был состояться научный поединок между Фиоре с Николо Тарталья (1500– 1557). Последний был талантливым ученым, выходцем из бедной семьи, зарабатывавшим себе на жизнь преподаванием математики и механики в городах Северной Италии. Узнав, что Фиоре владеет формулой Ферро и готовит своему противнику задачи на решение кубических уравнений, Тарталья сумел заново открыть эту формулу.

На диспуте Фиоре предложил Тарталье несколько вопросов, требующих умения решать уравнения третьей степени. Но Тарталья уже нашел раньше сам решение таких уравнений и, мало того, не только одного того частного случая, который был решен Ферро, но и двух других частных случаев. Тарталья принял вызов и сам предложил Фиоре свои задачи. Результатом состязания было полное поражение последнего. Тарталья решил предложенные ему задачи в продолжение двух часов, между тем как Фиоре не мог решить ни одной задачи, предложенной ему (с обеих сторон было 30 задач).

Вскоре Тарталья смог решать уравнения вида х 3 = рх + q (p›0, q ›0). Наконец он сообщил, что уравнения вида х 3 + q = px сводятся к предыдущему виду, но не дал способа сведения. Тарталья долго не публиковал своего результата. Причин этому было две: во-первых, та же причина, которая останавливала и Ферро. Во-вторых, невозможность справиться с неприводимым случаем. Последний состоит в том, что есть уравнения х 3 = рх + q которые имеют действительный положительный корень. Однако формула Тартальи не давала решения в том случае, когда надо было извлекать корень из отрицательных чисел, так как не было возможности правильно трактовать мнимые числа, получающиеся при этом. Неприводимый случай появлялся у Тартальи и в уравнениях вида х 3 + q = px.

Однако его труд не пропал даром. С 1539 года кубическими уравнениями начинает заниматься Кардано (1501–1576). Услышав об открытии Тартальи, он приложил много усилий, чтобы выманить тайну у осторожного и недоверчивого ученого для публикации в своей книге «Великое искусство, или о правилах алгебры». Только когда Кардано поклялся над Евангелием и дал честное слово дворянина, что не откроет способа Тартальи для решения уравнений и даже запишет его в виде непонятной анаграммы, Тарталья согласился раскрыть свою тайну. Он показал правила решений кубических уравнений, изложив их в стихах, причем довольно туманно.

Однако Кардано не только понял эти правила, но и нашел доказательства для них. Невзирая на данное им обещание, он опубликовал способ Тартальи, и способ этот известен до сих пор под именем «правила Кардана». А книга появилась в 1545 году.

Вскоре было открыто и решение уравнений 4-й степени. Итальянский математик Д. Колла предложил задачу, для решения которой известных до той поры правил были недостаточно, а требовалось умение решать биквадратные уравнения. Большинство математиков считало эту задачу неразрешимою. Но Кардано предложил ее своему ученику Луиджи Феррари, который решил задачу, и даже нашел способ решать уравнения 4-й степени вообще, сводя их к уравнениям 3-й степени.

Столь быстрые и поразительные успехи в нахождении формулы решения уравнений 3-й и 4-й степени поставили перед математиками проблему отыскания решений уравнений любых степеней. Огромное число попыток, усилия виднейших ученых не приносили успеха. В поисках протекло около 300 лет. Только в XIX веке Абель (1802–1829) доказал, что уравнения степени п›4, вообще говоря, в радикалах не решаются.

На пути создания общей теории алгебраических уравнений и способов их решения стояли еще два препятствия: сложность, неудобство получаемых формул и неразъясненность неприводимого случая. Первое составляло чисто практическое неудобство. Его Кардано устраняет, предлагая находить корни уравнений приближенно с помощью правила двух ложных положений, по существу применяемого и в наши дни в виде простой, или линейной, интерполяции. Второе препятствие имеет более глубокие корни, а попытки его преодоления привели к весьма важным следствиям.

Плодотворная и смелая попытка справиться с неприводимым случаем принадлежит итальянскому математику и инженеру Р. Бомбелли из Болоньи. В сочинении «Алгебра» (1572) он ввел формально правила действий над мнимыми и комплексными числами.

Алгебраическая символика

Рост содержания математических знаний всегда связан с развитием математической символики. Последняя, если она достаточно хорошо отражает реальную сущность математических операций, активно воздействует на математику и сама приобретает оперативные свойства. Единую систему алгебраических символов, последовательно проведенную, первым дал, по-видимому, Виета.

Франсуа Виета (1540–1603) – французский математик, юрист по образованию и роду деятельности. Главный труд его жизни – «Введение в искусство анализа», огромное и чрезвычайно обстоятельно написанное сочинение по новой алгебре.

Правда, он не был полностью завершен.

Замысел Виеты определялся следующими соображениями: крупные успехи итальянских математиков в решении уравнений 3-й и 4-й степени достигнуты благодаря применению эффективных алгебраических приемов. Но число отдельных видов алгебраических уравнений огромно и растет, достигнув, например, у Кардано шестидесяти шести; каждый из видов требовал особых приемов. Необходимо найти общие методы подхода к решению алгебраических уравнений; последние должны рассматриваться в возможно более общем виде с буквенными коэффициентами. Кроме того, необходимо сочетать эффективность алгебраических приемов со строгостью геометрических построений, хорошо знакомых Виете.

Благодаря созданной им символике впервые появилась возможность выражения уравнений и их свойств общими формулами. Объектами математических операций стали не числовые задачи, а сами алгебраические выражения. Именно этот смысл вкладывал Виета в характеристику своего исчисления как «искусства, позволяющего хорошо делать математические открытия». Символы Виеты были вскоре усовершенствованы его младшими современниками, особенно Гэрриотом (1560– 1621).

В сочинениях Виеты подводится своеобразный итог математики эпохи Возрождения. Но его алгебра была еще несовершенной. Ее очень утяжеляла видовая трактовка величин, обладающих размерностью. В ней нет

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×