reality, it will be impossible to have a peace that is based on reality… Making some allowances for the further development of the atomic bomb in the next few years… this weapon will be so powerful that there can be no peace if it is simultaneously in the possession of any two powers unless these two powers are bound by an indissoluble political union… It will hardly be possible to get political action along that line unless high efficiency atomic bombs have actually been used in this war and the fact of their destructive power has deeply penetrated the mind of the public.

Which was the explanation Szilard now gave for challenging the Army and Du Pont: “This for me personally is perhaps the main reason for being distressed by what I see happening around me.”

Bush insisted in return that all was well. “I feel that the record when this effort is over,” he wrote Szilard, “will show clearly that there has never at any time been any bar to the proper expression of opinion by scientists and professional men within their appropriate sphere of activity in this whole project.” But he was willing to meet with Szilard if that was what the physicist wanted. In February, preparing for that meeting, Szilard drafted forty-two pages of notes. Much in those notes is specific and local; here and there basic issues are joined.

Since invention is unpredictable, Szilard writes, “the only thing we can do in order to play safe is to encourage sufficiently large groups of scientists to think along those lines and to give them all the basic facts which they need to be encouraged to such activity. This was not done in the past [in the Manhattan Project] and it is not being done at present.” He tracked the consequences of the government's policies of restriction:

The attitude taken toward foreign born scientists in the early stages of this work had far reaching consequences affecting the attitude of the American born scientists. Once the general principle that authority and responsibility should be given to those who had the best knowledge and judgment is abandoned by discriminating against the foreign born scientists, it is not possible to uphold this principle with respect to American born scientists either. If authority is not given to the best men in the field there does not seem to be any compelling reason to give it to the second-best men and one may give it to the third- or fourth- or fifth-best men, whichever of them appears to be the most agreeable on purely subjective grounds.

Wigner's early discouragement was an “incalculable loss,” Szilard thought; the fact that Fermi was excluded from centrifuge development work at Columbia “visibly affected” him “and he has from that time on shown a very marked attitude of being always ready to be of service rather than considering it his duty to take the initiative.”

Finally, Szilard judged the Met Lab moribund, its services rejected and its spirit broken, and pronounced its epitaph:

The scientists are annoyed, feel unhappy and incapable of living up to their responsibility which this unexpected turn in the development of physics has thrown into their lap. As a consequence of this, the morale has suffered to the point where it almost amounts to a loss of faith. The scientists shrug their shoulders and go through the motions of performing their duty. They no longer consider the overall success of this work as their responsibility. In the Chicago project the morale of the scientists could almost be plotted in a graph by counting the number of lights burning after dinner in the offices in Eckhart Hall. At present the lights are out.

But Leo Szilard at least was not yet done with protest.

Enrico Fermi took the initiative at least once during the war. Perhaps influenced by the enthusiasm he found at Los Alamos for weapons-making, he proposed at the time of the April 1943 conference — privately to Robert Oppenheimer, it appears — that radioactive fission products bred in a chain-reacting pile might be used to poison the German food supply.

The possibility of using radioactive material bred in a nuclear reactor as a weapon of war had been mentioned by Arthur Compton's National Academy of Sciences committee in 1941. German development of such a weapon began worrying the scientists at the Met Lab late in 1942, on the assumption that Germany might be a year or more ahead of the United States in pile development. If CP-1 went critical in December 1942, they argued, the Germans might have had time by then to run a pile long enough to create fiercely radioactive isotopes that could be mixed with dust or liquid to make radioactive (but not fissionable) bombs. Germany might then logically attempt preemptively to attack the Met Lab, if not American cities. German development of radioactive warfare, another vision in a dark mirror, seemed to the leaders of the Manhattan Project to require countering by examination into parallel U.S. development; the S-l Committee gave such assignment to a subcommittee consisting of James Bryant Conant as chairman and Arthur Compton and Harold Urey as members. That subcommittee went to work sometime before May 1943, probably before February.

Fermi would have known of the Met Lab discussions. His proposal to Oppenheimer at the April conference was different from those essentially defensive concerns, however, and clearly offensive in intent. He may well have been motivated in part by his scientific conservatism: may have asked himself what recourse was open to the United States if a fast-fission bomb proved impossible — it could not be demonstrated by experiment for at least two years — and have found the answer in the formidable neutron flux of CP-1 and its intended successors. Oppenheimer swore Fermi to intimate secrecy within the larger secrecy of the Manhattan Project; when the Italian laureate returned to Chicago he went quietly to work.

In May Oppenheimer traveled to Washington. Among other duties he reported Fermi's ideas to Groves and learned of the Conant subcommittee. Back at Los Alamos on May 25 he wrote Fermi a warm letter reporting what he had found. He attributed the subcommittee assignment to a request from the Army Chief of Staff, George Marshall, although it seems far likelier that the study originated within the Manhattan Project. “I therefore, with Groves' knowledge and approval, discussed with [Conant] the application [i.e., poisoning German food supplies] which seemed to us so promising.”

Oppenheimer had also discussed Fermi's idea with Edward Teller. The isotope the men identified that “appears to offer the highest promise” was strontium, probably strontium 90, which the human body takes up in place of calcium and deposits dangerously and irretrievably in bone. Teller thought that separating the strontium from other pile products “is not a very major problem.” Oppenheimer wanted to delay the work until “the latest safe date,” he told Fermi further, so that they would have “a much better chance of keeping your plan quiet.” He did not even want to include Compton in any immediate discussion. Summarizing, he wrote in part:

I should recommend delay if that is possible. (In this connection I think that we should not attempt a plan unless we can poison food sufficient to kill a half a million men, since there is no doubt that the actual number affected will, because of non-uniform distribution, be much smaller than this.)

There is no better evidence anywhere in the record of the increasing bloody-mindedness of the Second World War than that Robert Oppenheimer, a man who professed at various times in his life to be dedicated to Ahimsa (“the Sanscrit word that means doing no harm or hurt,” he explains) could write with enthusiasm of preparations for the mass poisoning of as many as five hundred thousand human beings.

Mid-1943 was in any case a season of great apprehension among the atomic scientists, who saw Nazi Germany beginning to lose the war and sensed that country's desperation. The Manhattan Project expected to produce atomic bombs by early 1945; if Germany had begun fission research in 1939 at similar scale it should have bombs nearly in hand. Hans Bethe and Edward Teller wrote Oppenheimer in a memorandum on August 21:

Recent reports both through the newspapers and through secret service, have given indications that the Germans may be in possession of a powerful new weapon which is expected to be ready between November and January. There seems to be a considerable probability that this new weapon is tubealloy [i.e., uranium]. It is not necessary to describe the probable consequences which would result if this proves to be the case.

It is possible that the Germans will have, by the end of this year, enough material accumulated to make a large number of gadgets which they will release at the same time on England, Russia and this country. In this case there would be little hope for any counter-action. However, it is also possible that they will have a production, let us say, of two gadgets a month. This would place particularly Britain in an extremely serious position but there would be hope for counter-action from our side before the war is lost, provided our own tubealloy program is drastically

Вы читаете The Making of the Atomic Bomb
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату