detecting and counting the lighter atoms set in motion by [alpha] particles… I am also trying to break up the atom by this method.”

His equipment was similar to Marsden's, a small brass box fitted with stopcocks to admit and evacuate gases from its interior, with a scintillation screen mounted on one end. For an alpha source he used a beveled brass disk coated with a radium compound:

Arrangement of Ernest Rutherford's experiment: D, alpha source. S, zinc sulfide scintillation screen. M, microscope.

The likeliest explanation for Marsden's anomalous H atoms was contamination; hydrogen is light and chemically active and a minor component of the ubiquitous air. So Rutherford's problem was basically one of rigorous exclusion. He needed to narrow down the possible sources of hydrogen atoms in his box until he could conclusively prove their point of origin. He started by showing that they did not come from the radioactive materials alone. He established that they had the same mass and expected range as the H atoms that recoiled from alpha bombardment of hydrogen gas in Marsden's experiment. He admitted dry oxygen into the evacuated brass box, then carbon dioxide, and found in both cases that the H atoms coming off the radioactive source were slowed down by colliding with the atoms of those gases — fewer scintillations showed up on the screen.

Then he tried dry air. The result surprised him. Instead of decreasing the number of scintillations, as oxygen and carbon dioxide had done, dry air increased them — doubled them in fact.

These newfound scintillations “appeared to the eye to be about equal in brightness to H scintillations,” Rutherford notes cautiously near the beginning of the revolutionary Part IV of his paper. He went after them. If they were H atoms, they still might be contaminants. He eliminated that possibility first. He showed that they could not be due merely to the hydrogen in water vapor (H2O): drying the air even more thoroughly made little difference in their number. Dust might harbor H atoms like dangerous germs: he filtered the air he let into the box through long plugs of absorbent cotton but found little change.

Since the increase in H atoms occurred in air but not in oxygen or carbon dioxide, Rutherford deduced then that it “must be due either to nitrogen or to one of the other gases present in atmospheric air.” And since air is 78 percent nitrogen, that gas appeared to be the likeliest candidate. He tested it simply, by comparing scintillations from air to scintillations from pure nitrogen. The test confirmed his hunch: “With pure nitrogen, the number of long- range scintillations under similar conditions was greater than in air.” Finally, Rutherford established that the H atoms came in fact from the nitrogen and not from the radioactive source alone. And then he made his stunning announcement, couching it as always in the measured understatement of British science: “From the results so far obtained it is difficult to avoid the conclusion that the long-range atoms arising from collision of [alpha] particles with nitrogen are not nitrogen atoms but probably atoms of hydrogen… If this be the case, we must conclude that the nitrogen atom is disintegrated.” Newspapers soon published the discovery in plainer words: Sir Ernest Rutherford, headlines blared in 1919, had split the atom.

It was less a split than a transmutation, the first artificial transmutation ever achieved. When an alpha particle, atomic weight 4, collided with a nitrogen atom, atomic weight 14, knocking out a hydrogen nucleus (which Rutherford would shortly propose calling a proton), the net result was a new atom of oxygen in the form of the oxygen isotope 017:4 plus 14 minus 1. There would hardly be enough 017 to breathe; only about one alpha particle in 300,000 crashed through the electrical barrier around the nitrogen nucleus to do its alchemical work.

But the discovery offered a new way to study the nucleus. Physicists had been confined so far to bouncing radiation off its exterior or measuring the radiation that naturally came out of the nucleus during radioactive decay. Now they had a technique for probing its insides as well. Rutherford and Chadwick soon went after other light atoms to see if they also could be disintegrated, and as it turned out, many of them — boron, fluorine, sodium, aluminum, phosphorus — could. But farther along the periodic table a barricade loomed. The naturally radioactive sources Rutherford used emitted relatively slow-moving alpha particles that lacked the power to penetrate past the increasingly formidable electrical barriers of heavier nuclei. Chadwick and others at the Cavendish began to talk of finding ways to accelerate particles to higher velocities. Rutherford, who scorned complex equipment, resisted. Particle acceleration was in any case difficult to do. For a time the newborn science of nuclear physics stalled.

Besides Rutherford's crowd of “boys,” several individual researchers worked at the Cavendish, legatees of J. J. Thomson. One who pursued a different but related interest was a slim, handsome, athletic, wealthy experimentalist named Francis William Aston, the son of a Birmingham gunmaker's daughter and a Harborne metal merchant. As a child Aston made picric-acid bombs from soda-bottle cartridges and designed and launched huge tissue-paper fire balloons; as an adult, a lifelong bachelor, heir after 1908 to his father's wealth, he skied, built and raced motorcycles, played the cello and took elegant trips around the world, stopping off in Honolulu in 1909, at thirty-two, to learn surfing, which he thereafter declared to be the finest of all sports. Aston was one of Rutherford's regular Sunday partners at golf on the Gogs in Cambridge. It was he who had announced, at the 1913 meeting of the British Association, the separation of neon into two isotopes by laborious diffusion through pipe clay.

Aston trained originally as a chemist; Rontgen's discovery of X rays turned him to physics. J. J. Thomson brought him into the Cavendish in 1910, and it was because Thomson seemed to have separated neon into two components inside a positive-ray discharge tube that Aston took up the laborious work of attempting to confirm the difference by gaseous diffusion. Thomson found that he could separate beams of different kinds of atoms by subjecting his discharge tube to parallel magnetic and electrostatic fields. The beams he produced inside his tubes were not cathode rays; he was working now with “rays” repelled from the opposite plate, the positively charged anode. Such rays were streams of atomic nuclei stripped of their electrons: ionized. They could be generated from gas introduced into the tube. Or solid materials could be coated onto the anode plate itself, in which case ionized atoms of the material would boil off when the tube was evacuated and the anode was charged.

Mixed nuclei projected in a radiant beam through a magnetic field would bend into separated component beams according to their velocity, which gave a measure of their mass. An electrostatic field bent the component beams differently depending on their electrical charge, which gave a measure of their atomic number. “In this way,” writes George de Hevesy, “a great variety of different atoms and atomic groupings were proved to be present in the discharge tube.”

Aston thought hard about J. J.'s discharge tube while he worked during the war at the Royal Aircraft Establishment at Farnborough, southwest of London, developing tougher dopes and fabrics for aircraft coverings. He wanted to prove unequivocally that neon was isotopic — J. J. was still unconvinced — and saw the possibility of sorting the isotopes of other elements as well. He thought the positive-ray tube was the answer, but though it was good for general surveying, it was hopelessly imprecise.

By the time Aston returned to Cambridge in 1918 he had worked the problem out theoretically; he then began building the precision instrument he had envisioned. It charged a gas or a coating until the material ionized into its component electrons and nuclei and projected the nuclei through two slits that produced a knife-edge beam like the slit-narrowed beam of light in a spectrograph. It then subjected the beam to a strong electrostatic field; that sorted the different nuclei into separated beams. The separated beams proceeded onward through a magnetic field; that further sorted nuclei according to their mass, producing separated beams of isotopes. Finally the sorted beams struck the plateholder of a camera and marked their precise locations on a calibrated strip of film. How much the magnetic field bent the separated beams — where they blackened the strip of film — determined the mass of their component nuclei to a high degree of accuracy.

Aston called his invention a mass-spectrograph because it sorted elements and isotopes of elements by mass much as an optical spectrograph sorts light by its frequency. The mass-spectrograph was immediately and sensationally a success. “In letters to me in January and February, 1920,” says Bohr, “Rutherford expressed his joy in Aston's work,” which “gave such a convincing confirmation of Rutherford's atomic model.” Of 281 naturally occurring isotopes, over the next two decades Aston identified 212. He discovered that the weights of the atoms of all the elements he measured, with the notable exception of hydrogen, were very nearly whole numbers, which was a powerful argument in favor of the theory that the elements were assembled in nature simply from protons and electrons — from hydrogen atoms, that is. Natural elements had not weighed up in whole numbers for the chemists because they were often mixtures of isotopes of different whole-number weights. Aston proved, for example, as he noted in a later lecture, “that neon consisted, beyond doubt, of isotopes 20 and 22, and that its atomic weight 20.2 was the result of these being present in the ratio of about 9 to 1.” That satisfied even J. J. Thomson.

Вы читаете The Making of the Atomic Bomb
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату