particle.

The Joliot-Curies decided next to see if the beryllium radiation would knock protons out of matter as alpha particles did. “They fitted their ionization chamber with a thin window,” explains Feather, “and placed various materials close to the window in the path of the radiation. They found nothing, except with materials such as paraffin wax and cellophane which already contained hydrogen in chemical combination. When thin layers of these substances were close to the window, the current in the ionization chamber was greater than usual. By a series of experimental tests, both simple and elegant, they produced convincing evidence that this excess ionization was due to protons ejected from the hydrogenous material.” The Joliot-Curies understood then that what they were seeing were elastic collisions — like the collisions of billiard balls or marbles — between the beryllium radiation and the nuclei of H atoms.

But they were still committed to their previous conviction that the penetrating radiation from beryllium was gamma radiation. They had not thought about the possibility of a neutral particle. They had not read Rutherford's Bakerian Lecture because such lectures were invariably, in their experience, only recapitulations of previously reported work. Rutherford and Chadwick alone had thought seriously about the neutron.

On January 18, 1932, the Joliot-Curies reported to the Academy of Sciences their discovery that paraffin wax emitted high-velocity protons when bombarded by beryllium radiation. But that was not the title and the argument of the paper they wrote. They titled their paper “The emission of protons of high velocity from hydrogenous materials irradiated with very penetrating gamma rays.” Which was as unlikely as if a marble should deflect a wrecking ball. Gamma rays could deflect electrons, a phenomenon known as the Compton effect after its discoverer, the American experimental physicist Arthur Holly Compton, but a proton is 1,836 times heavier than an electron and not easily moved.

At the Cavendish in early February Chadwick found the Comptes Rendus, the French physics journal, in his morning mail, discovered the Joliot-Curie paper and read it with widening eyes:

Not many minutes afterward Feather came to my room to tell me about this report, as astonished as I was. A little later that morning I told Rutherford. It was a custom of long standing that I should visit him about 11 a.m. to tell him any news of interest and to discuss the work in progress in the laboratory. As I told him about the Curie-Joliot observation and their views on it, I saw his growing amazement; and finally he burst out “I don't believe it.” Such an impatient remark was utterly out of character, and in all my long association with him I recall no similar occasion. I mention it to emphasize the electrifying effect of the Curie-Joliot report. Of course, Rutherford agreed that one must believe the observations; the explanation was quite another matter.

No further duty interposed itself between Chadwick and his destiny. He went fervently to work, starting on February 7, 1932, a Sunday: “It so happened that I was just ready to begin experiment [when he read of the Joliot-Curie discovery]… I started with an open mind, though naturally my thoughts were on the neutron. I was reasonably sure that the Curie-Joliot observations could not be ascribed to a kind of Compton effect, for I had looked for this more than once. I was convinced that there was something quite new as well as strange.”

His simple apparatus consisted of a radiation source and an ionization chamber, the chamber connected to a vacuum-tube amphfier and thence to an oscilloscope. The radiation source, an evacuated metal tube strapped to a rough-sawn block of pine, contained a one-centimeter silver disk coated with polonium mounted close behind a two-centimeter disk of pure beryllium, a silver-gray metal that is three times as light as aluminum. Alpha particles from the polonium striking beryllium nuclei knocked out the penetrating beryllium radiation, which, Chadwick found immediately, would pass essentially unimpeded through as much as two centimeters of lead.

The half-inch opening into the small ionization chamber that faced this radiation source was covered with aluminum foil. Within the shallow chamber, in an atmosphere of air at normal pressure, a small charged plate collected electrons ionized by incoming radiation and moved their pulses along to the amplifier and oscilloscope. “For the purpose at hand,” explains Norman Feather, “such an arrangement was ideal. If the amplifier were carefully designed, it was possible to ensure that the magnitude of the oscillograph deflection was directly proportional to the amount of ionization produced in the chamber… The energy of the recoil atom producing the ionization could thus be calculated directly from the size of the deflection on the oscillograph record.”

Chadwick mounted a sheet of paraffin two millimeters thick in front of the aluminum-foil window into the ionization chamber; immediately, he wrote in his final report on the experiment, “the number of deflections recorded by the oscillograph increased markedly.” That showed that particles ejected from the paraffin were entering the chamber. Then he began interposing sheets of aluminum foil between the wax and the chamber window until no more kicks appeared on the oscilloscope; by scaling the absorptions of aluminum compared to air he calculated the range of the particles as just over 40 centimeters in air; that range meant “it was obvious that the particles were protons.”

Thus repeating the Joliot-Curie work prepared the way. Now Chadwick broke new ground. He removed the paraffin sheet. He wanted to study what happens to other elements bombarded directly by the beryllium radiation. Elements in the form of solids he mounted in front of the chamber window: “In this way lithium, beryllium, boron, carbon and nitrogen, as paracyanogen, were tested.” Elements in the form of gases he simply pumped into the chamber to replace the ambient air: “Hydrogen, helium, nitrogen, oxygen, and argon were examined in this way.” In every case the kicks increased on the oscilloscope; the powerful beryllium radiation knocked protons out of all the elements Chadwick tested. It knocked about the same number out of each element. And, most important for his conclusion, the energies of the recoiling protons were significantly greater than they could possibly be if the beryllium radiation consisted of gamma rays. “In general,” Chadwick wrote, “the experimental results show that if the recoil atoms are to be explained by collision with a [gamma-ray photon], we must assume a larger and larger energy for the [photon] as the mass of the struck atom increases.” Then, quietly, in what in fact is a devastating criticism of the Joliot-Curie thesis, invoking the basic physical rule that no more energy or momentum can come out of an event than went into it: “It is evident that we must either relinquish the application of the conservation of energy and momentum in these collisions or adopt another hypothesis about the nature of the radiation.” When they read that sentence the Jo-liot-Curies were deeply and properly chagrined.

The hypothesis Chadwick proposed adopting should come as no surprise: “If we suppose that the radiation is not a [gamma] radiation, but consists of particles of mass very nearly equal to that of the proton, all the difficulties connected with the collisions disappear, both with regard to their frequency and to the energy transfer to different masses. In order to explain the great penetrating power of the radiation we must further assume that the particle has no net charge… We may suppose it [to be] the ‘neutron’ discussed by Rutherford in his Bakerian Lecture of 1920.”

Chadwick then worked the numbers to show that his hypothesis was the correct one to explain the facts.

“It was a strenuous time,” he said afterward. From beginning to end the work took ten days and he kept up his Cavendish responsibilities besides. He averaged perhaps three hours of sleep a night, labored over the weekend of February 13–14 as well, finished probably on the seventeenth, a Wednesday, the day he sent off a first brief report to Nature to establish priority of discovery. He titled that report, published as a letter to the editor, “Possible existence of a neutron.” “But there was no doubt whatever in my mind or I should not have written the letter.”

“To [Chadwick's] great credit,” writes Segre in tribute, “when the neutron was not present [in earlier experiments] he did not detect it, and when it ultimately was there he perceived it immediately, clearly and convincingly. These are the marks of a great experimental physicist.”

A young Russian, Peter Kapitza, had come up to Cambridge in 1921 to work at the Cavendish. He was solid, dedicated, charming and technically inventive and he soon made himself the apple of Rutherford's eye, the only one among all the boys, even including Chadwick, who could convince the frugal director to allow large sums of money to be spent for apparatus. In 1936 Rutherford would attack Chadwick angrily for encouraging the construction of a cyclotron at the Cavendish; but already in 1932 Kapitza had a separate laboratory in an elegant new brick building in the Cavendish courtyard for his expensive experiments with powerful magnetic fields. As Kapitza had settled in at Cambridge he had noticed what he considered to be an excessive and unproductive deference of British physics students to their seniors. He therefore founded a club, the Kapitza Club, devoted to open and unhierarchical discussion. Membership was limited and coveted. Members met in college rooms and Kapitza frequently opened discussions with deliberate howlers so that even the youngest would speak up to correct him, loosening the grip of

Вы читаете The Making of the Atomic Bomb
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату