He continued eastward to visit the Fermis in Leonia. Independently of Turner, Segre recalls, both he and Fermi had been thinking about element 94. On December 15, he writes, “we had a long walk along the Hudson, in freezing weather, during which we spoke of the possibility that the isotope of mass 239 of element 94… might be a slow neutron fissioner. If this proved to be true, [it] could substitute for 235U as a nuclear explosive. Furthermore, a nuclear reactor fueled with ordinary uranium would produce [the new element]. This gave an entirely new perspective on the making of nuclear explosives, eliminating the need to separate uranium isotopes, at that time a truly scary problem.”
Lawrence happened to be visiting New York. “Fermi, Lawrence, Pe-gram and I met in Dean Pegram's office at Columbia University and developed plans for a cyclotron irradiation that could produce a sufficient amount of [element 94].” After Christmas Segre returned to Berkeley.
A young chemist there, Glenn T. Seaborg, had already begun working toward identifying and isolating element 94. Born in Michigan of Swedish-American parents, Seaborg had grown up in Los Angeles and taken his Ph.D. at Berkeley in chemistry in 1937, when he was twenty-five. He was exceptionally tall, thin, guarded in the Swedish way but gifted and comfortable at work. The published record of Otto Hahn's 1933 Cornell lectures,
As early as the end of August he had bombarded a sample of uranium to produce neptunium and had assigned one of his second-year graduate students, Arthur C. Wahl, to study its chemistry. His other collaborator in the search for 94 was Joseph W. Kennedy, like Seaborg a Berkeley chemistry instructor. By late November the group had progressed through four more bombardments, unraveling enough of neptunium's chemistry to devise techniques for isolating highly purified samples. Seaborg then wrote McMillan at MIT, a letter he summarizes in a careful history he wrote later that he cast as a contemporary diary: “I suggested that since he has now left Berkeley… and is therefore not in a position to continue this work [of studying neptunium and looking for element 94], that we would be very glad to carry on in his absence as his collaborators.” McMillan acceded in mid-December; by the time Segre returned to Berkeley Seaborg had separated out significant fractions of material from his bombarded samples, including uranium, fission products, purified neptunium and a rare-earth fraction that might contain 94.
Two searches were thus to proceed simultaneously. Seaborg's team would follow one especially intense alpha emitter it had identified in the hope of demonstrating that it was an isotope of 94, chemically different from all other known elements. At the same time, Segre and Seaborg would produce neptunium 239 in quantity, look for its decay product (which ought to be 94239) and attempt to measure that substance's fissibility.
Segre and Seaborg bombarded ten grams of a solid uranium compound, uranyl nitrate hexahydrate (UNH), for six hours in the 60-inch cyclotron on January 9. They bombarded five more grams for an hour the next morning. By afternoon they knew from ionization-chamber measurements that they could make 94 by cyclotron bombardment; one kilogram of UNH, they calculated, suitably irradiated, should produce about 0.6 microgram (one millionth of a gram) from neptunium after allowing time for beta decay.
Seaborg's team identified an alpha-emitting daughter of Np238 on January 20. Definitive proof that it was 94 required chemical separation, and that delicate, tedious work proceeded during February. The crucial breakthrough came at the beginning of a week when everyone routinely labored past midnight to pursue the difficult fractionations to their end. On Sunday afternoon, February 23, Wahl discovered he could precipitate the alpha emitter from acid solution using thorium as a carrier. But he was not then able to separate the alpha emitter from the thorium. He talked to a Berkeley chemistry professor who suggested using a more powerful oxidizing agent.
That evening Seaborg and Segre began bombarding 1.2 kilograms of UNH in the 60-inch cyclotron to transmute some of its uranium into neptunium. They packed the UNH into glass tubes, set the tubes in holes drilled into a 10-inch block of paraffin and set the paraffin in a wooden box. Then they arranged the wooden box behind the beryllium target of the big cyclotron, which battered copious quantities of neutrons from the beryllium with powerful 16 MeV deuterons — favorite cyclotron projectiles, deuterium nuclei from heavy water. With the UNH in place in the cyclotron Seaborg climbed the stairs to the third floor of Gilman Hall where Wahl brewed fractionations under the roof in a cramped room relieved by a small balcony. Wahl tried the new oxidation chemistry that evening with Seaborg at his side. It worked; the thorium precipitated from solution and the alpha emitter stayed behind, enough of it to read out about 300 kicks per minute on the linear amplifier. That, writes Seaborg, was the “key step in its discovery,” but they still needed a precipitate of the alpha emitter and they pushed on through the night. Seaborg remembers noticing the new day — lightning over San Francisco to the west across the Bay — when he stepped out onto the balcony to clear his lungs of fumes. Working again past midnight on Tuesday, Wahl filtered out a precipitate cleared of thorium. “With this final separation from Th,” Seaborg records with emphasis, “it has been demonstrated that our alpha activity can be separated from all known elements and thus it is now clear that our
The bombardment of Segre's and Seaborg's kilogram sample, interrupted from time to time by other experiments that commanded the cyclotron, continued for a week. The UNH was rendered more intensely radioactive; the radioactivity would increase dangerously as they concentrated the Np239 they had made. They began working with goggles and lead shielding, dissolving the uranium first in two liters of ether and then proceeding through a series of laborious precipitations.
Their fifth and sixth reprecipitations they finished on Thursday, March 6. From 1.2 kilograms of UNH they had now separated less than a millionth of a gram of pure Np239 mixed with sufficient carrier to stain a miniature platinum dish that measured two-thirds of an inch across and half an inch deep. When they had dried this speck of matter God had not welcomed at the Creation they simply snipped off the sides of the platinum dish, covered the sample with a protective layer of Duco Cement, glued the dish to a piece of cardboard labeled Sample A and set it aside until it decayed completely to 94239.
On Friday, March 28 (of the week when Field Marshal Erwin Rommel, commander of the Afrika Korps, opened a major offensive in North Africa; when the British meat ration was reduced to six ounces per person per week; when British torpedo bombers successfully attacked the Italian fleet as it returned from the Aegean, a performance that greatly interested the Japanese), Seaborg recorded:
This morning Kennedy, Segre and I made our first test for the fissionability of 94239 using Sample A…
Kennedy has constructed during the past few weeks a portable ionization chamber and linear amplifier suitable for detecting fission pulses… Sample A (estimated to contain 0.25 micrograms of 94239) was placed near the screened window of the ionization chamber embedded in paraffin near the beryllium target of the 37-inch cyclotron. The neutrons produced by the irradiation of the beryllium target with 8 MeV deuterons give a fission rate of 1 count per minute per microampere. When the ionization chamber is surrounded by a cadmium shield, the fission rate drops to essentially zero…
Not until 1942 would they officially propose a name for the new element that fissioned like U235 but could be chemically separated from uranium. But Seaborg already knew what he would call it. Consistent with Martin Klaproth's inspiration in 1789 to link his discovery of a new element with the recent discovery of the planet Uranus and with McMillan's suggestion to extend the scheme to Neptune, Seaborg would name element 94 for Pluto, the ninth planet outward from the sun, discovered in 1930 and named for the Greek god of the underworld, a god of the earth's fertility but also the god of the dead:
Frisch and Peierls had calculated a small U235 critical mass on the basis of sensible theory. Through the winter Merle Tuve's group at the DTM had continued to refine its cross-section measurements; in March Tuve was able to send to England a measured U235 fast-fission cross section that the British used to confirm a critical mass somewhat larger than the Frisch-Peierls estimate: about eighteen pounds untamped, nine or ten pounds surrounded by a suitably massive and reflective tamper. “This first test of theory,” Peierls wrote triumphantly that month, “has given a completely positive answer and there is no doubt that the whole scheme is feasible (provided the technical problems of isotope separation are satisfactorily solved) and that the critical size for a U sphere is
