controversy was definitively resolved in 1939 by Stephen Ranson, who was then director of the Institute of Neurology at Northwestern University and perhaps the leading authority on the neuroanatomy of the brain, and his graduate student Albert Hetherington. The two demonstrated that it was, indeed, the hypothalamus, not the pituitary, that regulated adiposity in the rats; lesions in a region called the
John Brobeck, a Yale researcher who had done his Ph.D. work with Ranson, was the first to propose a mechanistic explanation for the phenomenon. Brobeck had replicated Hetherington’s experiments in his Yale laboratory and then read Newburgh’s articles arguing a perverted appetite as the cause of obesity. Now Brobeck perceived his research as providing experimental confirmation in laboratory animals of Newburgh’s hypothesis. The hypothalamic lesions, Brobeck argued, served to damage what amounted to a center of hunger regulation in the hypothalamus. The lesions made the rats hungry, and so the rats over ate and grew obese. He would later write about his astonishment at how voraciously these surgically lesioned rats ate. Because obesity in most of his rats (but not all) appeared only after the rats began eating ravenously, Brobeck reasoned incorrectly that “the laws of thermodynamics suggest that…food intake determines weight gain.” Brobeck coined the term
The alternative hypothesis, that the obesity in these animals was a disorder of fat metabolism, came from Ranson and Hetherington. Whereas Brobeck interpreted his argument in the context of Newburgh’s beliefs, Ranson interpreted his from the context of thirty years of brain research. Some of the lesioned animals ate voraciously, Ranson noted, which might have been due to hunger alone, but others ate normally and still grew obese. (Several of Brobeck’s rats also grew obese while eating no more than lean rats did, but Brobeck dismissed their relevance to his overeating hypothesis on the basis that some other effect “related to the feeding habits” of these animals might be responsible.*107 ) Ranson also noted “the tremendously decreased activity of these obese rats.”
Ranson argued that Brobeck’s hyperphagia hypothesis missed the bigger picture. “Insistence upon the primary importance” of either overeating or inactivity “would in all probability represent oversimplification of the problem, and this for at least two reasons,” Ranson wrote.
In the first place, the two factors are complementary in their effect upon body weight. Both would tend to increase it. A very sedentary life, combined with a high caloric intake would seem to be an ideal combination for building up a thick
Damage to the ventromedial hypothalamus caused a defect that directed nutrients away from the tissues and organs where they were needed for fuel and into the fat tissue, Ranson argued. It made the animals more lipophilic. This reduced the supply of fuel to the other cells of the body and so caused “hidden cellular semistarvation,” or what Astwood later called “internal starvation.” That in turn led to the voracious hunger—hyperphagia—that Brobeck had considered the primary defect. As long as nutrients continued to be channeled into fat and away from the cells of other tissues and organs, the animals would remain hungry. If they couldn’t satisfy this hunger by eating more—when their food supply was restricted, for instance—they would respond by expending less energy.
Brobeck’s scenario—that the primary role of the ventromedial hypothalamus is to regulate food intake—would survive into the modern era of obesity research, but Ranson’s insights were far more profound. Only Ranson could explain all the observations, and he did so based on an ongoing revolution in the understanding of the brain, and particularly the role of the hypothalamus. This was Ranson’s expertise. The hypothalamus is the “concertmaster” of homeostasis, as
Just before Ranson and Hetherington took to inducing corpulence in rats, Ranson had studied the hypothalamic regulation of fluid balance. This influenced his interpretation of the later research. Our bodies conserve fluids and water, just as they do fuel. Even our saliva and gastric juices are reabsorbed and reused. Just as damage to the ventromedial hypothalamus can induce obesity, damage elsewhere in the hypothalamus can induce diabetes insipidus. The symptoms of this rare condition are excessive urination and a tremendous and constant thirst. These symptoms appear in uncontrolled diabetes mellitus as well, but in diabetes insipidus, insulin secretion is not impaired, so blood sugar and fat metabolism remain regulated and no sugar appears in the urine.
The similarities between diabetes mellitus and diabetes insipidus had led Ranson and other physiologists to conclude that the homeostatic regulation of fluid balance was akin to that of blood sugar. That both diabetes insipidus and obesity could be caused by hypothalamic lesions informed Ranson’s interpretation of the underlying disorders. In the case of diabetes insipidus, the lesions inhibit the ability of the kidneys to conserve water by suppressing the secretion of an anti-diuretic hormone that normally works in the healthy animal to inhibit urination. This failure in the homeostatic regulation of fluids causes the kidney to excrete too much water, and that leads to a compensatory thirst to replace the fluid that’s lost.
The same cause and effect are evident in Type 1 diabetes mellitus. The inability of diabetics to utilize the food they eat, and particularly the carbohydrates, results in a state of starvation and extreme hunger. Diabetics also urinate more, because the body gets rid of the sugar that accumulates in the bloodstream by allowing it to overflow into the urine, and this is why diabetics will be abnormally thirsty as well.
Lesions to the ventromedial hypothalamus can induce tremendous hunger
It’s hard to avoid the suggestion that one major factor in how this research played out was the preconceptions of the investigators and their urge to make a unique contribution to the science. Ranson had suggested that all the more obvious manifestations of hypothalamic lesions were the consequences of a primary defect in the homeostatic control of energy balance that made the animals accumulate excessive fat in the adipose tissue. Brobeck and the other investigators who took to studying hypothalamic obesity would conclude that whatever phenomenon they happened to find most remarkable in their own postoperative rodents was the critical factor, or at least a critical factor, requiring intensive investigation. By doing so, as Ranson had cautioned in the early 1940s, they oversimplified the physiology and only directed attention away from the fundamental problem. Jean Mayer, for instance, would discuss hypothalamic obesity in the plural—as the “classic type of experimental obesities”—and he would say that one such obesity was caused by lack of physical activity, as in his mice. Philip Teitelbaum, who did his research as a doctoral student at Johns Hopkins in the early 1950s, observed that VMH-lesioned rodents, at the peak of their obesity, became finicky eaters, and he concluded that this was an obvious manifestation of the