This was the research Gofman first reported in
After
While the three Eastern laboratories took three years to learn how to use an ultracentifruge for fractionating lipoproteins, Gofman proceeded with his own research, refined his understanding of how these lipoproteins predicted heart disease, and he then insisted that the analysis techniques be updated accordingly. The other investigators, however, were having considerable trouble duplicating Gofman’s
In 1956, the four groups published a report in the American Heart Association journal
Gofman would later be vindicated, but the majority opinion prevailed at the time: studying lipoproteins held no value in the clinical management of heart disease. Gofman and his Berkeley collaborators continued the research alone through 1963, when Gofman left to establish a biomedical-research division at the Lawrence Livermore National Laboratory and spent the rest of his career working on the health effects of radiation.
Lost entirely in the contretemps were the dietary implications of Gofman’s research. “While it is true that, for certain individuals, the
Though Gofman’s studies had demonstrated that the amount of LDL in the blood can indeed be elevated by the consumption of saturated fats, it was
This fact was absolutely critical to the dietary prevention of heart disease, Gofman said. If a physician put a patient with high cholesterol on a low-fat diet, that might lower the patient’s LDL, but it would raise VLDL. If LDL was abnormally elevated, then this low-fat diet might help, but what Gofman called the “carbohydrate factor” in these low-fat diets might raise VLDL so much that the diet would do more harm than good. Indeed, in Gofman’s experience, when LDL decreased, VLDL tended to rise disproportionately. And if VLDL was abnormally elevated to begin with, then prescribing a low-fat, high-carbohydrate diet would certainly
This was why Gofman described the measurement of total cholesterol as a “false and highly dangerous guide” to the effect of diet on heart disease. Total-cholesterol measurements tell us nothing about the status of VLDL and LDL. Prescribing low-fat diets indiscriminately to anyone whose cholesterol appears to be elevated, or bombarding us with “generalizations such as ‘we all eat too much fat,’ or ‘we all eat too much animal fat,’” would increase heart-disease risk for a large proportion of the population. “Neglect of [the carbohydrate] factor can lead to rather serious consequences,” wrote Gofman in 1958, “first, in the failure to correct the diet in some individuals who are very sensitive to the carbohydrate action; and second, by allowing certain individuals sensitive to the carbohydrate action to take too much carbohydrate as a replacement for some of their animal fats.”
By 1955, Pete Ahrens at Rockefeller University had come to this same conclusion, although Ahrens was specifically studying triglycerides, rather than the VLDL particles that carry the triglycerides. Ahrens was considered by many investigators to be the single best scientist in the field of lipid metabolism. He had observed how the triglycerides of some patients shoot up on low-fat diets and fall on high-fat diets. This led Ahrens to describe a phenomenon that he called
Over the course of a decade, Ahrens had seen only two patients whose blood serum became cloudy with triglycerides after eating high-fat meals. He had thirteen in whom carbohydrates caused the lipemia. Six of those thirteen had such high triglycerides that they had originally been referred to Ahrens from physicians who had misdiagnosed them as having a genetic form of high cholesterol. Since the VLDL particles that transport triglycerides, as Gofman had noted, also carry cholesterol and so contribute to the total cholesterol in the circulation, an elevated triglyceride level can elevate total cholesterol along with it. Ahrens believed that the fat- induced lipemia was a rare genetic disorder but the carbohydrate-induced lipemia was probably “an exaggerated form of the normal biochemical process which occurs in all people on high-carbohydrate diets.” In both cases, the fat in the blood would clear up when the subjects went on a low-calorie diet. To Ahrens, this explained why the carbohydrate-induced increase in triglycerides was absent in Asian populations living primarily on rice. As long as they were eating relatively low-calorie diets compared with their level of physical activity, which was inevitably the case in such impoverished populations, the combination would counteract the triglyceride-raising effect of the carbohydrates.