“Yes, that huge bulge explains itself,” I replied; “undoubtedly a fair-sized meteoric stone has collided with our vessel. It is very fortunate that the stone was not much larger, or there would have been an end to the Areonal and to us as well. These meteorites travel at such tremendous speed that, on entering the earth’s atmosphere, they become incandescent owing to the friction of the air, and, unless very large, are entirely consumed and dissipated into dust before they can reach the earth. Those that do fall are always partially fused on the outside by the tremendous heat generated by the friction of our atmosphere. These meteorites are what people call ‘shooting stars,’ and many are under the impression that they really are stars, until the difference is explained to them.”
John said, “We ought to congratulate ourselves upon such a lucky escape from annihilation; for had our vessel been constructed of any metal less hard and tough than our ‘martalium,’ and without a double and packed shell, it must have been wrecked and entirely destroyed by the shock of the tremendous concussion it had sustained. Even the very metal of the casing might have been completely melted by the intense heat generated by the impact of the meteorite.”
“Heh, mon!” exclaimed M’Allister; “it’s all very well talking about our lucky escape, and putting it all down to your own cleverness in designing and constructing the Areonal; but you should rather give thanks to Providence for saving us, and for enabling you to take the precautions you did. I say, ‘Thank God!’” he remarked, and he solemnly raised his right hand as he spoke.
“Quite right, M’Allister,” replied John: “we are all too prone to credit ourselves with more than we are entitled to. At the same time, M’Allister, you must remember that we Englishmen recognise as fully as you do the over-ruling power of Providence, although we may not be quite so free in speaking about it in ordinary conversation.”
“Yes,” I added, “you may be quite sure, M’Allister, that we are equally as grateful as yourself for the mercy which has preserved us all from an awful death. My very first thought on realising our extremely narrow escape from destruction was to say ‘Thank God!’ but I did not say it aloud as you did. It is in matters like these that people differ according to their temperament and training; and it is not safe to judge another because, in any particular circumstances, he does not act in precisely the same way as we ourselves would.”
Thus we travelled on and on, each day bringing us more than two million miles nearer to our destination. Mars was apparently increasing in diameter the nearer we drew to it, and the dark blue line around the south polar snow-cap, indicating the lake of water from the melting snow, was very conspicuous. The snow-cap had recently decreased rapidly, being now near its minimum and irregular in shape, for in the southern hemisphere it was now late in June. Pointing to the planet, I remarked, “There is our destination! We see it now as the poet pictured it for us, and the words of Dr. Oliver Wendell Holmes are very appropriate to the present circumstances:
‘The snow that glittered on the disc of Mars Has melted, and the planet’s fiery orb Rolls in the crimson summer of its year!’”
On the 18th of September we passed between the earth and Mars, nearly in a line with the sun. On that date Mars was in perigee, or at its nearest point to the earth during the present year. Its distance from the earth was then 36,100,000 miles, and it will not be so close again until the 24th of August 1924. We could not see the earth, as its dark side was turned towards us, and it was also lost in the brilliancy of the sun.
At this date we had travelled 88,000,000 miles since we left the earth, yet we knew it was there, level with our vessel, and only about 29,000,000 miles distant on our left hand, whilst Mars was only 7,000,000 miles from us on our right-hand side.
Our position now was as follows:—Taking an imaginary line drawn from the Areonal to Mars as the base line of an isosceles triangle, we were moving along the left side of the triangle, and Mars was moving in a slightly curved line along the right side. Our paths were therefore converging, and if all went well we should both meet at the apex of the triangle on the 24th September, as we had originally intended.
We therefore had six clear days to cover the distance of less than 12,000,000 miles, so we should have sufficient time to slacken speed at the end of the journey. (See the chart.)
Mars was rapidly growing in size and brightness, for the distance between the planet and the Areonal was quickly diminishing as our paths converged, and the various markings on its almost full round disc formed the subject of continual observation and conversation. We had noticed on several occasions a mistiness on some parts of the planet, which I attributed to the vapours raised from the canals by the heated atmosphere.
On the 21st of September, when we were all enjoying a smoke in the “evening,” and conversation had dragged somewhat, John started us off on a fresh tack and gave us something to talk about for a very long time.
He winked at M’Allister and, looking at me with a knowing smile, said: “Professor, as we are nearing our destination it might perhaps be well if you now gave us some detailed information respecting the planet, similar to that which you gave us when we were approaching the moon. It would be both interesting and useful; for we should learn much more from an orderly statement of the facts than we should from several long but desultory conversations.”
“Yes, Professor,” chimed in M’Allister, “I’m quite ready to learn something definite about Mars, for I can’t say I really know much about it at present.”
“Very well then,” I replied, “it is upon your own heads, and if you are willing to listen to a rather long story, I am prepared to do the talking. Please remember, however, that it will require some time to make matters clear and understandable.”
“Fire away, mon,” cried M’Allister, “we will listen as long as you care to talk.”
So I began—“Mars, as no doubt you are aware, is a much smaller planet than the earth, its diameter being only 4220 miles, which is a little less than twice the diameter of our moon.
“It would require nine and a half globes the size of Mars to make one globe the size of the earth; and even then it would not be so heavy, because the average density of Mars is only about three-fourths of that of the earth. Mars is the next planet outside the earth’s orbit, so is the fourth from the sun. The orbit in which Mars moves in its journey round the sun is very much more eccentric than the earth’s orbit; in fact it is more eccentric than the orbits of any of the larger planets. As a consequence, the planet’s distance from the sun varies greatly according to the particular part of the orbit in which it may be moving. Its mean distance from the sun is 141,500,000 miles, its greatest distance over 154,000,000, and at its nearest approach to the sun, or ‘perihelion,’ as it is called, its distance is only 129,500,000 miles. Mars travels in its orbit at a mean rate of 15 miles a second.
“As its orbit is also eccentrically placed in relation to the earth’s orbit, it follows that its nearest distance from us in any particular years may vary greatly. The nearest possible approach it can make in regard to the earth is a little under 35,000,000 miles; when at the opposite point of its orbit its nearest approach is about 62,000,000 miles from the earth. As the years of Mars and the earth differ greatly in length, and the two planets move at different speeds, the very favourable oppositions can only occur about once every forty-five years; though a comparatively near opposition occurs about every fifteen years. Such a close approach we have just witnessed, and it will be fifteen years before Mars is again so near to the earth!
[Illustration: CHART: showing the Orbits of the Earth and Mars, and the relative positions of the two Planets, during the years 1909-10. Mars passed over the dotted portion of its Orbit in the year 1910.
The Outer Circle is the Orbit of Mars, and the inner Circle is the Orbit of the Earth. The Seasonal points on both Orbits show the Seasons in the Northern hemisphere. In the Southern hemisphere the Seasons are reversed, “Summer” occurring at the point marked “Winter,” and “Spring” at the point marked “Autumn,” &c. &c.
The dotted downward line on the left-hand side shows the course taken by the “Areonal”, which left the Earth on the 3rd of August and arrived at Mars on the 24th of September. * Shows the point reached when John wished to turn back; and the lower dotted line, the alternative course then suggested.
The long dotted line running upwards to the Spring Equinox of the Earth shows the course taken on the homeward Voyage.
Drawn by M. Wicks.
Plate VII]
“The Martian year is equal to 687 of our days, but as the Martian days are slightly longer than ours, this really represents 668 Martian days.
“The entire surface of Mars contains an area of about 56,000,000 square miles, which is about one-fourth of the area of the earth’s surface.
“Its gravity is only three-eighths of the earth’s gravity, thus everything upon Mars would weigh