owing to its nearness to the planet; and, Mars being small, the curve of its sphere is sharp, so that the horizon is more limited than on the earth, and the satellite is shut out from view anywhere above latitude 69° by the body of the planet.
Another peculiarity is that, when in the zenith, Phobos appears twice as large in area as it does when near the horizon, and notwithstanding its very small size, Phobos appears rather larger than our moon, because it is so near to the planet.
The length of the Martian “night” is about 12 hours and 20 minutes, and during this very short time Phobos may be seen to rise in the west, set in the east, and rise again once more in the west. Consequently it will be evident that it must travel very rapidly across the sky. It really moves over a space of 32-1/2° in a single hour—a great contrast to the slow and stately movement of our moon, which only passes over half a degree in an hour.
Moreover, Phobos may be seen to rise as a new moon, pass through its phases to the full, wane, and again become new, all in the course of a single Martian night; or it may be seen twice full and once new during the same time.
Even this does not exhaust the list of phenomena, for, being so close to Mars, Phobos is very frequently eclipsed by the shadow of the planet. On the other hand, the sun may be eclipsed by Phobos something like fourteen hundred times in the course of a Martian year; and, as already mentioned, the other satellite is often occulted by Phobos—sometimes when both may be only at the half full phase, and these occultations look very peculiar.
Deimos, being only 10 miles in diameter and about 12,500 miles from the surface of the planet, does not give rise to so many phenomena as the nearer satellite: still they are very numerous.
It revolves round the planet in 30-1/4 hours, but appears to take 131-1/2 hours to do so, being above the horizon about 60 hours, and below it nearly 72 hours. These are the times as seen from the equator; but, as in the case of Phobos, the farther the place is from the equator the shorter is the period that Deimos is seen above the horizon, until, when latitude 82° is reached in either hemisphere, it ceases to become visible at all.
Our moon, being so very much more distant from our earth, could be seen from both the poles.
Deimos also passes nearly twice through all its phases whilst it is above the horizon, viz. during about 60 hours, and may be seen twice full and twice new in that time.
Eclipses of Deimos by the planet and occultations of it by the other satellite are very frequent. Being so small, it can never cause an eclipse of the sun, but it transits the sun as a dark spot about one hundred and twenty times during the Martian year.
This is really a very inadequate list of the phenomena connected with the satellites, but it will be seen that the number is enormous compared with the few eclipses of the sun or moon seen on the earth during the course of one year. Certainly Mars is an astronomer’s world!
Merna heard my statements respecting these movements and phenomena as I explained them to my two friends; and when I had finished, he remarked, “You seem to be fairly well posted in these matters, sir?”
“Yes,” I said; “thanks to our astronomers, both professional and amateur, all these things have been very carefully calculated; and, with the exception of a few doubtful points, we probably know nearly as much about them as the Martians themselves do.”
M’Allister then turned to me and said, “Professor, you told us that the two satellites of Mars revolved round the planet in a certain time, but in each case you afterwards said they appeared to take a much longer time to do so. I’m rather puzzled to understand how that can be.”
“It’s really a simple matter, M’Allister,” I answered, “and I think I can make it clear to you. While the satellite is making one revolution round the planet the latter is turning on its axis in the same direction as the satellite is moving, following it up in fact; and you will I think understand that in these circumstances the people on that part of the planet where the moon is visible must necessarily keep it in view for a longer period than would be the case if the planet were not revolving in the same direction.
“You have been used to being on board a ship; so suppose your vessel was steaming twelve miles an hour and there was another vessel at anchor just twelve miles ahead of you, you would reach it in just one hour, would you not?”
“Yes, certainly I should,” replied M’Allister.
“Now,” I continued, “suppose that the other vessel, instead of being at rest, was moving away from you at the rate of six miles an hour; after you had steamed one hour it would still be six miles ahead of you, and it would take you exactly another hour to catch it up. So you would be just double the time reaching it when moving as compared with the time required to do so when it was at anchor. This is very similar to the cases of the satellites of Mars, and much the same thing happens in regard to Mars and the earth. If they are opposite to each other at a certain point, Mars will have taken much more than one revolution round its orbit before they will be opposite to each other again, because they are both moving in the same direction. Do you see it now?” I asked.
“Yes, Professor,” he replied. “I know now, because you have cleared it all up. It’s simple enough when one understands it.”
Merna then asked me if I would like to see some of their astronomical instruments, and, on my replying that I should very much like to do so, he took us to an observatory where Corontus was at work.
I was at once struck by the small size of the telescopes; and, on inquiring about them, Corontus told me that very large instruments had long become obsolete, for these small ones could be used for all the purposes for which a large one had been required, and gave better results.
I examined one of them and found, to my surprise, that it embodied the very ideas that I had long been trying to carry into effect. With this view I had made many experiments, as it seemed to me that it ought to be possible to construct an instrument of moderate and convenient dimensions which would show as much as our monsters will show, and yet be capable of being used with low powers when occasion required. I had endeavoured to attain this result by the aid of electricity, but failed to do so. Evidently I had missed something, but here was the thing itself in successful working, as I found upon testing it.
On looking at some drawings of Saturn, which were hanging up in the observatory, I noticed that this planet was depicted with two faint outer rings which do not appear on our drawings of the planet. One of these rings has, however, been discovered by M. Jarry-Desloges, but the outermost ring is still unknown to our observers. This ring is a very broad one, its particles being widely scattered, hence its extreme faintness.
The Martians have also discovered two planets far beyond the orbit of Neptune, and their knowledge of the other planets and also of the sun and the stars is far ahead of ours.
I was also shown a comet which had recently become visible through their telescopes, and found from its position that it was undoubtedly Halley’s comet, for which our astronomers were so eagerly watching. I wondered whether any of them had been fortunate enough to discover it early in August, as the Martian astronomers did. Its last appearance was in the year 1835.
John remarked that “He thought Halley’s comet might be termed ‘Britain’s Comet,’ for several of its appearances had coincided with the occurrence of very important events and turning-points in our national history, such as the Battle of Hastings, the Reformation, &c.,” and he added, “as it will be a conspicuous object in our skies in 1910, I wonder whether any important event will occur in our country? In 1835, when it last appeared, we had a political crisis!”
“Well, John,” I replied, “I do not attach much importance to comets as affecting mundane affairs; we have got rather beyond such beliefs as that. Besides, when we left England early in August things were going on all right in our political world, and there was no indication of any serious crisis.”
“Still,” said John, “it would be rather curious if we did have a crisis next year; and I should not be surprised!”
As we were walking home next day, M’Allister suddenly tripped over some little projection and fell prone to the ground. John ran to his assistance and raised him up, at the same time asking “If he were hurt?”
“No, not at all,” said M’Allister; “I seemed to fall so lightly that I scarcely felt it when I touched the ground.”
“Ah, M’Allister!” I exclaimed, “if you had fallen like that upon our earth, I think you would not have come off quite scatheless. You see, upon Mars the gravitation is much less than on the earth, being only three-eighths of what it is there, so one does not fall so swiftly, nor so heavily, as on the earth.
“You can prove that very easily. Just take up a stone and hold it out higher than your head, and let it fall; at