NORTHEAST

Alternatives

13. Science versus Math

Tianjin, Hebei, and Liaoning

China is a country where once they realize, “Gee, we have to do something,” then they leap forward.

—Suntech founder Shi Zhengrong, the world’s first solar billionaire

The egghead leading China’s charge toward an efficient, low-carbon future almost never made it to university. Professor Li Can grew up during the Cultural Revolution with a politically unfortunate habit: he loved to study. This went down well with his high school teachers, but, in those days, it was not much good being a top- level student if you were a second-rate revolutionary.

By 1975, the nation’s universities had been closed for almost a decade. Business was still frowned upon. For a bright young man, the only career tracks were through the Communist Party or the government. Lacking the ideological zeal for either, Li’s only choice after graduation was to return to his home in a remote corner of Gansu and become a barefoot doctor. His high school education was all the qualification he needed to perform acupuncture and rudimentary medicine around local villages near the old Silk Road.

This was a period of massive transition for China, but the changes almost passed Li by. After Mao died, a new leadership took over. Soon after, they announced the full reopening of the universities. Li did not hear about it for weeks because nobody in his village had a telephone or a radio.

Fortunately, the deputy headmaster of his old school remembered the brilliant pupil who had been forced to return to the desert, He cycled 30 kilometers to Li’s home to tell him the news and recommended he join the first wave of students to take the Gaokao entrance exam. There was barely any time to prepare and few teaching materials. In those conditions, the future head of China’s clean energy research lab did well to come forty-ninth out of 150 students in his region. None of the prestigious universities would accept him. Desperate to secure a place, he applied for a course at a second-rate university in a field he had little interest in.

“I chose chemistry. To be honest, it was not my favorite subject. I had always preferred math and literature, but I thought I would have more chance of securing a place with chemistry. You cannot understand what it was like then.”1

I had a soft spot for Li’s generation. The wave of university students who came of age as the country removed the ideological blinkers of the Cultural Revolution tended to be more open-minded, down-to-earth, and appreciative of education than others. “I can still do acupuncture,” the former barefoot doctor said with a smile as he poured a fresh cup of green tea. He had come a long way from curing desert villagers with traditional medicine.

We were sitting in Li’s spacious study in the Dalian National Laboratory for Clean Energy. The research center had just been established to spearhead China’s efforts to escape the energy crunch and ease the risks of global warming. Li was the first head. He was engaging company. As he talked about the future of China, the world, and energy, it was clear he had huge ambitions.

“Solar is the most important renewable energy source for China’s future. Wind and biomass are good, but their potential is limited. With solar, though, we can do more. There is a lot of land available for solar farms in the deserts of Gansu and Xinjiang. We have calculated that if we covered just a third of those areas with photovoltaic cells then we could meet the current energy needs of the entire country.”

That would mean filling the old Silk Road with billions of solar panels. Professor Li’s old home in Gansu would become a power hub for the nation. The barren deserts would be transformed into China’s greatest asset. If any nation could build such a model it was likely to be China, which had the land, the scale of vision, and the manufacturing resources. It was a thrilling prospect. Li had high-level backing to make it work. The science and technology minister, Wan Gang, told me solar was the best long-term hope. “The sun has more than enough energy for all our needs, but we currently lack the understanding to utilize that,” he said. “Since 2007, we have been using more solar power, and I think we will increase in the future. The priority is to strengthen research and build a strong business model.”

But realization was still a long way off. In the short and medium term, the boffins (research scientists) working under Li would work on ways to improve the efficiency of coal. Major experiments were taking place across the country. In some cases the work was more advanced than anything in the U.S. or Europe, suggesting China might one day become a leader in low-carbon technology.2

It was heady stuff but exactly what I was looking for in the northeast rust belt, where I planned to put “Scientific Development” under the microscope. Could brainpower and money solve China’s environmental problems and make the country a green superpower that could save the world from the accumulated side effects of industrialization and overconsumption? Cities were trying to go green. Industry was moving toward greater efficiency, and the state was planning to ramp up spending on research and development to levels close to those of the U.S., Germany, and Japan.3 Businesses and local governments were generating a new boom in wind farms, photovoltaic cell manufacturing, electric cars, “eco-cities,” and smart-grid technology.

The government had just announced a new front line of the intellectual effort to produce more light and heat with less smoke and waste: the National Laboratory for Clean Energy. If climate change was the biggest challenge facing the planet, and China was the country most responsible for greenhouse gas emissions, then this laboratory was where much of the hope had to be focused in the search for a scientific solution to save the planet.

It was based in the Dalian Institute of Chemical Physics, a reassuringly boffin-friendly environment. Nerdy types wandered through a pleasantly green campus. The only distraction was a giant electronic screen that at first appeared to be made for displaying the latest football scores or stock indices. But look a little closer and the data was good solid science: “Test run of new vanadium redox battery-powered display. Time since last recharge: 30 days, 17 hours.” Inside the buildings, the corridor walls were decorated with complex flowcharts and compound diagrams. In the workrooms, students with impressively unkempt hair had their noses deep in lovingly worn research papers and books. The laboratories fitted the 1950s mad-scientist stereotype: semichaotic and crammed full of spectrometers, chemical lasers, and manifold catalyzing experiments, most of which seemed to be housed inside Robbie-the-Robot stainless-steel casings.

The changing role of the institute has tracked trends in resource availability. Founded in 1949, its original goal was to find alternative supplies of energy. Most of the scientists worked on synthetic replacements for oil, which was then in desperately short supply in China. Their role changed completely in 1959 with the discovery of the huge Daqing oil fields in Heilongjiang.4 After that, the institute quickly reinvented itself as an intellectual resource for the petrochemical industry. By the time of my visit, the wheel had turned again. With more than three-quarters of Daqing’s reserves gone, scientists were switching in droves to renewable energy and coal- conversion technology. In their labs, they could see the future and—in the long term, at least—it was green.

China planned to invest about $300 billion to provide 15 percent of its power from renewables by 2020.5 But far bigger sums would be invested in “new energy,” including “clean coal” technology. This would ensure that, for the medium term, the color of development would remain a smoky brown. For the next twenty years, and probably much longer, China would be unable to kick its coal-puffing habit. The government has yet to set a target for when its carbon emissions might peak. Wan, the minister, told me he personally expected the peak between 2030 and 2040. Other officials put it closer to 2050. There was simply no other energy available to fuel the massive economic growth that the government was planning. All the scientists could do was try to ease the

Вы читаете When a Billion Chinese Jump
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату