специалист такого калибра? Откуда он взялся? В памяти автора из всей этой конференции, проходившей сорок лет назад, запомнился только этот человек.
Ф.Г. Старос, он же Альфред Сарант (Сарантопулос), был американским инженером греческого происхождения, получившим степень бакалавра по электронике в университете Нью-Йорка в 1941 г. Работал в области проектирования систем связи и лаборатории ядерной физики Корнелльского университета (штат Нью-Йорк). Там же участвовал в проектировании циклотрона. К 1950 г. он приобрел опыт в разработке систем связи, радаров, первых американских компьютеров и электронного оборудования циклотрона. До 1944 г. он был членом американской компартии. В 1950 г. он попал под расследование ФБР антиамериканской деятельности компартии в связи с делом супругов Розенберг (атомный шпионаж в пользу СССР) и в том же году вместе с женой скрылся в Чехословакии, перейдя границу с Мексикой по фальшивым документам. Пять лет спустя в СССР появился «чех», инженер Филипп Старос. Вместе с ним приехал и его коллега Йозеф Берг. Именно Старое инициировал разработку в СССР микроэлектроники (управляющих цифровых машин — компьютеров). Уже в 1956 г. в тогдашнем Ленинграде была организована лаборатория СЛ-11 (спецлаборатория-11). В 1958 г. он сделал первый доклад на эту тему перед элитой советской электронной промышленности.
Автор этих строк знает по собственному опыту, что невозможно было не подпасть под обаяние интеллекта этого человека. А в 1959 г. лабораторию Староса посетил председатель ВПК при Совмине СССР Д.Ф.Устинов, после чего в 1961 г. было организовано КБ-2 электронной техники под руководством Староса. В том же 1961 г. был создан Госкомитет, преобразованный в 1965 г. в мощное Министерство электронной промышленности (министр — А. Шокин), одно из знаменитой оборонной «девятки». В 1962 г. в КБ-2 была разработана первая советская управляющая мини-ЭВМ УМ1-НХ, прообраз будущих бортовых компьютеров. По сути, это была первая в мире действующая промышленная мини-ЭВМ (была установлена на Череповецком металлургическом заводе для управления блюмингом), серийное производство которых началось в Ленинграде в 1963 г. Позже комплекс автоматического контроля и управления на базе двух УМ- 1НХ был установлен на 2-м блоке Белоярской АЭС. В ноябре 1969 г. Ф.Г. Старосу была присуждена Госпремия за создание УМ1-НХ, первенца советской мини- ЭВМ.
Тогда же в 1962 г., когда была разработана первая мини-ЭВМ, это бюро посетили Н.С. Хрущев, в числе прочих были главком ВМФ Горшков и министр Шокин. Разработки этого коллектива произвели сильное впечатление на Хрущева. К этому времени Старос и его группа из пяти человек разработали проект Центра микроэлектроники (по типу американской компании Ай-Би-Эм — IBM), который был активно поддержан Хрущевым. В результате был создан центр-наукоград в Зеленограде под Москвой, а также конструкторские бюро в Риге, Минске, Ереване и Тбилиси. Старое был назначен заместителем генерального директора Зеленограда по науке, оставаясь одновременно начальником конструкторского бюро в Ленинграде. К 1964 г. в КБ-2 была разработана микро- ЭВМ УМ-2 для аэрокосмических систем, в первую очередь разработок Королева и Туполева. На базе УМ-2 была создана многоцелевая управляющая система «Узел» для малых подводных лодок. Затем в начале 1970-х гг. в КБ-2 были получены монолитные БИС (большие интегральные схемы), а далее и семейство однокристальных мини-ЭВМ.
Но в 1964 г. начались интриги — министр электронной промышленности А. Шокин и Ф. Старос вошли в конфликт по вопросам дальнейшего развития отрасли, а главный покровитель Староса Хрущев был снят с поста первого секретаря КПСС в октябре того же года. В 1974 г. КБ-2 было включено в состав производственного объединения «Светлана» (сейчас АО «Светлана»-«Микроэлектроника» — так называется бывшее КБ-2 Староса). Ф.Г. Старос уехал на Дальний Восток президентом Дальневосточного отделения РАН, где создал институт искусственного интеллекта, а в 1979 г. безвременно ушел из жизни в возрасте 60 лет. Яркая и продуктивная жизнь талантливого инженера, основателя советской и российской школы микроэлектроники.
Но вернемся к авиамоторам. Нельзя сказать, что на двигателях того времени совсем уж не использовалось электричество: искровые системы зажигания, контроль температуры газа за турбиной с помощью термопар, система электромеханических реле — программатор, отрабатывающий циклограмму запуска — все это отдельные электрические и электронные системы. Но в широком смысле для реализации «умного» управления двигателем, включая и мониторинг его состояния по множеству параметров, требовалась принципиально иная система. Система, получившая позднее с легкой руки американцев название FADEC (в просторечии «Фадек»), где ключевыми словами являются «Full Authority», т. е. с «полной ответственностью», без какого-либо гидромеханического резерва. Ну а следующие буквы «D», «Е», «С» имеют очевидную расшифровку «Digital» («цифровая»), «Electronic» («электронная»), «Control» (система «управления»). Современная электронно-цифровая управляющая машина авиационным двигателем оперирует 40–50 входными сигналами (дискретными и непрерывными) и порядка 30-ю выходными управляющими сигналами. Частота выдачи решений составляет 50-100 герц, что соответствует частоте среза (пропускаемой частоте) объекта, т. е. двигателя. Но для создания такой машины нужно было разработать не только новые алгоритмы управления и мониторинга, но и встроенные подсистемы самоконтроля, их непротиворечивого взаимодействия, распознавания нормальных и аварийных ситуаций, реконфигурации программ управления в зависимости от состояния двигателя или самолета, резервирования каналов управления и т. д., и т. п.
Наконец, нужно было разработать технологию отладки оказавшегося чрезвычайно разветвленным программного обеспечения системы управления и мониторинга двигателя как на безмоторном стенде, где двигатель заменен математической моделью, так и во время испытаний его на стенде и в полете. Позже оказалось, хотя это можно было предвидеть, что в слаботочных электросетях передачи информации наводятся сильные электромагнитные помехи, например от срабатывания электромагнитов или переменных контактов в штепсельных разъемах из-за вибраций. Пришлось скрупулезно заниматься помехами, особенностью которых была их кратковременность и случайность воздействия и соответственно трудность распознавания, достаточная тем не менее для сбоя программы. Вопросы молниезащиты, вибраций, повышенной температуры и т. д., и т. п. Вместо проблемы обеспечения качества (чистоты и температуры) топлива в гидромеханике на смену пришла, по сути, аналогичная проблема обеспечения качества электропитания.
Как известно, электронные информационные системы позволяют творить чудеса с обработкой большого количества информации, но их субстанция, элементная база, очень чувствительна к окружающей среде, очень «нежна». А двигатель как преобразователь энергии, естественно, «груб» в своих проявлениях, особенно в вибрациях и температуре. Сочетать эти два разнотипных объекта на одной платформе очень сложно.
Короче, необходимо было создать новые отрасли науки и промышленности. С одной стороны, требовалось развитие теории управления авиационными двигателями как специфическими объектами управления, а с другой — создание более надежной элементной базы электронных систем с минимальным количеством контактов, работающей в жестких условиях воздействия окружающей среды на двигателе. То, что эти проблемы не имели очевидного решения, видно из следующей дилеммы, которая возникла сразу же при практической реализации. Где размещать электронный блок, «мозг» системы управления: на двигателе или в приборном отсеке самолета?
При размещении блока в приборном отсеке мы обеспечиваем ему комфортные условия работы, но… при этом информационные линии связи, т. е. провода отдатчиков, установленных на двигателе, имеют большую длину и соответственно много разъемов, потенциальных источников помех и дефектов. При установке электронного блока на двигателе линии связи имеют минимальные длину и количество разъемов, но этот блок необходимо охлаждать и гасить вибрации, передающиеся от корпуса двигателя.
Электронные системы управления двигателем пережили быструю, как и все в авиации, двадцатилетнюю эволюцию от автономных аналоговых, расположенных на самолете с питанием от бортсети, до интегрированных (в систему управления самолетом) цифровых, размещенных на двигателе с автономным электропитанием от собственного генератора. Надо отметить, что в этой инновационной волне отечественная разработка электронных систем началась раньше, чем в США. Как уже отмечалось, это было обусловлено успехами американских фирм в разработке следующего, по сути последнего, поколения гидромеханических систем. В СССР тупик этого направления обозначился раньше. Но вот к «Фадеку» пришли раньше американцы благодаря своей более надежной элементной базе.
Инновационные скачки, или «прыжки», в США, как правило, имеют большую, чем у нас, «высоту».